
Computer Science E-66

Database Systems

Harvard Extension School, Fall 2024

Cody Doucette, Ph.D.

Introduction; Database Design, ER Models, and the Relational Model 2

Relational Algebra and SQL 35

Storage and Indexing 84

Implementing a Logical-to-Physical Mapping 108

Transactions and Schedules 121

Concurrency Control 138

Semistructured Data and XML 164

Distributed Databases and Replication 185

Processing Distributed Data Using MapReduce 201

NoSQL Databases 218

Recovery and Logging 251

Performance Tuning; Wrap-up and Conclusions 282

Computer Science E-66

Introduction
Database Design and ER Models

The Relational Model

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

Databases and DBMSs

• A database is a collection of related data.

• refers to the data itself, not the program

• Managed by some type of database management system
(DBMS)

The Conventional Approach

• Use a DBMS that employs the relational model

• use the SQL query language

• Examples: IBM DB2, Oracle, Microsoft SQL Server, MySQL

• Typically follow a client-server model

• the database server manages the data

• applications act as clients

• Extremely powerful

• SQL allows for more or less arbitrary queries

• support transactions and the associated guarantees

Transactions

• A transaction is a sequence of operations that is treated as
a single logical operation.

• Example: a balance transfer

• Other examples:

• making a flight reservation
select flight, reserve seat, make payment

• making an online purchase

• Transactions are all-or-nothing: all of a transaction’s changes
take effect or none of them do.

read balance1
write(balance1 - 500)
read balance2
write(balance2 + 500)

transaction T1

Why Do We Need Transactions?

• To prevent problems stemming from system failures.

• example:

• what should happen?

read balance1
write(balance1 - 500)
CRASH
read balance2
write(balance2 + 500)

transaction

Why Do We Need Transactions? (cont.)

• To ensure that operations performed by different users
don’t overlap in problematic ways.

• example: what’s wrong with the following?

• how could we prevent this?

read balance1
write(balance1 – 500)

read balance2
write(balance2 + 500)

user 1's transaction

read balance1
read balance2
if (balance1 + balance2 < min)

write(balance1 – fee)

user 2's transaction

Limitations of the Conventional Approach

• Can be overkill for applications that don’t need all the features

• Can be hard / expensive to setup / maintain / tune

• May not provide the necessary functionality

• Footprint may be too large
• example: can’t put a conventional RDBMS on a small

embedded system

• May be unnecessarily slow for some tasks
• overhead of IPC, query processing, etc.

• Does not scale well to large clusters

Example Problem I: User Accounts

• Database of user information for email,
groups,etc.

• Used to authenticate users
and manage their preferences

• Needs to be extremely fast and robust

• Don’t need SQL. Why?

• Possible solution: a key-value store

• key = user id

• value = password and other user information

• less overhead and easier to manage

• still very powerful: transactions, recovery, replication, etc.

Example Problem II: Web Services

• Services provided or hosted by Google, Amazon, etc.

• Can involve huge amounts of data / traffic

• Scalability is crucial

• load can increase rapidly and unpredictably

• use large clusters of commodity machines

• Conventional relational DBMSs don't scale well in this way.

• Solution: some flavor of noSQL

What Other Options Are There?

• View a DBMS as being composed of two layers.

• At the bottom is the storage layer or
storage engine.

• stores and manages the data

• Above that is the logical layer.

• provides an abstract representation
of the data

• based on some data model

• includes some query language, tool, or API
for accessing and modifying the data

• To get other approaches, choose different options for the layers.

logical layer

storage engine

OS FS

disks

Course Overview

• data models/representations (logical layer), including:

• entity-relationship (ER): used in database design

• relational (including SQL)

• semistructured: XML, JSON

• noSQL variants

• implementation issues (storage layer), including:

• storage and index structures

• transactions

• concurrency control

• logging and recovery

• distributed databases and replication

Course Requirements

• Lectures and weekly sections

• sections: optional but recommended; start this week

• also available by streaming and recorded video

• Five problem sets

• several will involve programming in Java

• all will include written questions

• grad-credit students will complete extra problems

• must be your own work
• see syllabus or website for the collaboration policy

• Midterm exam

• Final exam

Prerequisites

• A good working knowledge of Java

• A course at the level of CSCI E-22

• Experience with fairly large software systems is helpful.

Course Materials

• Lecture notes will be the primary resource.

• Optional textbook: Database Systems: The Complete Book
(2nd edition) by Garcia-Molina et al. (Prentice Hall)

• Other options:

• Database Management Systems by Ramakrishnan and
Gehrke (McGraw-Hill)

• Database System Concepts by Silberschatz et al.
(McGraw-Hill)

Additional Administrivia

• Instructor: Cody Doucette

• TA: Eli Saracino

• Office hours and contact info. are available on the Web:

http://cscie66.sites.fas.harvard.edu

• For questions on content, homework, etc.: Ed Discussion

Database Design

• In database design, we determine:

• which pieces of data to include

• how they are related

• how they should be grouped/decomposed

• End result: a logical schema for the database

• describes the contents and structure of the database

ER Models

• An entity-relationship (ER) model is a tool for database design.

• graphical

• implementation-neutral

• ER models specify:

• the relevant entities (“things”) in a given domain

• the relationships between them

Sample Domain: A University

• Want to store data about:

• employees

• students

• courses

• departments

• How many tables do you think we’ll need?

• can be hard to tell before doing the design

• in particular, hard to determine which tables are needed
to encode relationships between data items

Entities: the “Things”

• Represented using rectangles.

• Examples:

• Strictly speaking, each rectangle represents an entity set,
which is a collection of individual entities.

CSCI E-119 Jill Jones Drew Faust
English 101 Alan Turing Dave Sullivan
CSCI E-268 Jose Delgado Margo Seltzer
… … …

Course Student Employee

Course Student Employee

Attributes

• Associated with entities are attributes that describe them.
• represented as ovals connected to the entity by a line
• double oval = attribute that can have multiple values

start time end timeroomname

exam dates
Course

Keys

• A key is an attribute or collection of attributes that can be used
to uniquely identify each entity in an entity set.

• An entity set may have more than one possible key.
• example:

• possible keys include:

address emailname

Person

id age

Candidate Key

• A candidate key is a minimal collection of attributes that is a key.

• minimal = no unnecessary attributes are included

• not the same as minimum

• Example: assume (name, address, age) is a key for Person

• it is a minimal key because we lose uniqueness
if we remove any of the three attributes:

• (name, address) may not be unique

– e.g., a father and son with the same name and address

• (name, age) may not be unique

• (address, age) may not be unique

• Example: (id, email) is a key for Person

• it is not minimal, because just one of these attributes
is sufficient for uniqueness

• therefore, it is not a candidate key

Key vs. Candidate Key

• Consider an entity set for books:

key? candidate key?

isbn

author_id, title

author_id, isbn

author_id

author_id titleisbn

Book
assume that: each book has a unique isbn

an author doesn't write two books
with the same title

Primary Key

• We typically choose one of the candidate keys as the primary key.

• In an ER diagram, we underline the primary key attribute(s).

start time end timeroomname

exam dates
Course

Relationships Between Entities

• Relationships between entities are represented using diamonds
that are connected to the relevant entity sets.

• For example: students are enrolled in courses

• Another example: courses meet in rooms

Person CourseEnrolled

Course RoomMeets In

Relationships Between Entities (cont.)

• Strictly speaking, each diamond represents a relationship set,
which is a collection of relationships between individual entities.

• In a given set of relationships:

• an individual entity may appear 0, 1, or multiple times

• a given combination of entities may appear at most once
• example: the combination (CS 105, CAS 315) may appear

at most once

CS 111

CS 460

CS 510

CS 105 CAS 315

MCS 205

CAS 314

Course RoomMeets In

Attributes of Relationships

• A relationship set can also have attributes.

• they specify info. associated with the relationships in the set

• Example:

Person Course

credit status

Enrolled

Key of a Relationship Set

• A key of a relationship set can be formed by taking the
union of the primary keys of its participating entities.

• example: (Person.id, Course.name) is a key of enrolled

• The resulting key may or may not be a primary key.
Why?

credit status

Enrolled

id

Person

name

course

Degree of a Relationship Set

• Enrolled is a binary relationship set: it connects two entity sets.

• degree = 2

• It's also possible to have higher-degree relationship sets.

• A ternary relationship set connects three entity sets.

• degree = 3

Person CourseEnrolled

Person Course

Study
Group

Studies
In

Relationships with Role Indicators

• It’s possible for a relationship set to involve more than one
entity from the same entity set.

• For example: every student has a faculty advisor, where
students and faculty members are both members of the
Person entity set.

• In such cases, we use role indicators (labels on the lines)
to distinguish the roles of the entities in the relationship.

Person Advises
advisor

advisee

Cardinality (or Key) Constraints

• A cardinality constraint (or key constraint) limits the number
of times that a given entity can appear in a relationship set.

• Example: each course meets in at most one (i.e., 0 or 1) room

• A key constraint specifies a functional mapping from one
entity set to another.
• each course is mapped to at most one room (course room)

• as a result, each course appears in at most one relationship
in the meets in relationship set

• The arrow in the ER diagram has same direction as the mapping.

• note: the R&G book uses a different convention for the arrows

Course RoomMeets In

Cardinality Constraints (cont.)

• The presence or absence of cardinality constraints divides
relationships into three types:

• many-to-one

• one-to-one

• many-to-many

• We'll now look at each type of relationship.

Many-to-One Relationships

• Meets In is an example of a many-to-one relationship.

• We need to specify a direction for this type of relationship.

• example: Meets In is many-to-one from Course to Room

• In general, in a many-to-one relationship from A to B:

• an entity in A can be related to at most one entity in B

• an entity in B can be related to an arbitrary number of
entities in A (0 or more)

A BR

Course RoomMeets In

Picturing a Many-to-One Relationship

• Each course participates in at most one relationship,
because it can meet in at most one room.

• Because the constraint only specifies a maximum (at most one),
it's possible for a course to not meet in any room (e.g., CS 610).

CS 111

CS 460

CS 510

CS 105 CAS 315

MCS 205

CAS 314

CS 610

Course RoomMeets In

• The diagram above says that:

• a given book can be borrowed by at most one person

• a given person can borrow an arbitrary number of books

• Borrows is a many-to-one relationship from Book to Person.

• We could also say that Borrows is a one-to-many relationship
from Person to Book.

• one-to-many is the same thing as many-to-one,
but the direction is reversed

Another Example of a Many-to-One Relationship

Person BookBorrows

One-to-One Relationships

• In a one-to-one relationship involving A and B: [not from A to B]

• an entity in A can be related to at most one entity in B

• an entity in B can be related to at most one entity in A

• We indicate a one-to-one relationship by putting an arrow
on both sides of the relationship:

• Example: each department has at most one chairperson, and
each person chairs at most one department.

Person DepartmentChairs

A BR

Many-to-Many Relationships

• In a many-to-many relationship involving A and B:

• an entity in A can be related to an arbitrary number
of entities in B (0 or more)

• an entity in B can be related to an arbitrary number
of entities in A (0 or more)

• If a relationship has no cardinality constraints specified
(i.e., if there are no arrows on the connecting lines),
it is assumed to be many-to-many.

A BR

How can we indicate that each student
has at most one major?

• Majors In is what type of relationship in this case?

Person DepartmentMajors In

What if each student can have
more than one major?

• Majors In is what type of relationship in this case?

Person DepartmentMajors In

Another Example

• How can we indicate that each student has at most one
advisor?

• Advises is what type of relationship?

Person Advises
advisor

advisee

Cardinality Constraints and
Ternary Relationship Sets

• The arrow into "study group" encodes the following constraint:
"a person studies in at most one study group for a given course."

• In other words, a given (person, course) combination is
mapped to at most one study group.

• a given person or course can itself appear in multiple
studies-in relationships

• For relationship sets of degree >= 3, we use at most one arrow,
since otherwise the meaning can be ambiguous.

person course

study
group

studies
in

Participation Constraints

• Cardinality constraints allow us to specify that each entity
will appear at most once in a given relationship set.

• Participation constraints allow us to specify that each entity
will appear at least once (i.e., 1 or more time).

• indicate using a thick line (or double line)

• Example: each department must have at least one chairperson.

• We say Department has total participation in Chairs.

• by contrast, Person has partial participation

Person DepartmentChairs
omitting
the cardinality
constraints
for now

Participation Constraints (cont.)

• We can combine cardinality and participation constraints.

• a person chairs at most one department

• specified by which arrow?

• a department has ___________ person as a chair

Person DepartmentChairs

The Relational Model: A Brief History

• Defined in a landmark 1970 paper
by Edgar 'Ted' Codd.

• Earlier data models were closely tied
to the physical representation of the data.

• The relational model was revolutionary
because it provided data independence –
separating the logical model of the data
from its underlying physical representation.

• Allows users to access the data without understanding
how it is stored on disk.

The Relational Model: Basic Concepts

• A database consists of a collection of tables.

• Example of a table:

• Each row in a table holds data that describes either:

• an entity

• a relationship between two or more entities

• Each column in a table represents one attribute of an entity.

• each column has a domain of possible values

dobclassaddressnameid
3/10/852011Canaday C-54Jill Jones12345678

2/7/882008Lowell House F-51Alan Turing25252525

10/2/862009Pfoho, Moors 212 Audrey Chu33566891

7/13/882009Eliot E-21Jose Delgado45678900

11/14312007The DungeonCount Dracula66666666

...............

Relational Model: Terminology

• Two sets of terminology:

table = relation
row = tuple
column = attribute

• We'll use both sets of terms.

Requirements of a Relation

• Each column must have a unique name.

• The values in a column must be of the same type
(i.e., must come from the same domain).

• integers, real numbers, dates, strings, etc.

• Each cell must contain a single value.

• example: we can't do something like this:

• No two rows can be identical.

• identical rows are known as duplicates

phones…nameid
123-456-5678, 234-666-7890...Jill Jones12345678

777-777-7777, 111-111-1111...Alan Turing25252525

............

Null Values

• By default, the domains of most columns include a special value
called null.

• Null values can be used to indicate that:

• the value of an attribute is unknown for a particular tuple

• the attribute doesn't apply to a particular tuple. example:

major…nameid
computer science...Jill Jones12345678

mathematics...Alan Turing25252525

null...Dan Dabbler33333333

Student

Relational Schema

• The schema of a relation consists of:
• the name of the relation
• the names of its attributes
• the attributes’ domains (although we’ll ignore them for now)

• Example:

Student(id, name, address, email, phone)

• The schema of a relational database consists of the schema
of all of the relations in the database.

ER Diagram to Relational Database Schema

• Basic process:

• entity set a relation with the same attributes

• relationship set a relation whose attributes are:
• the primary keys of the connected entity sets
• the attributes of the relationship set

• Example of converting a relationship set:

• in addition, we would create a relation for each entity set

Enrolled(id, name, credit_status)

addressname end timestart time

credit status

Enrolled

id

Student

name

Course

Renaming Attributes

• When converting a relationship set to a relation, there may be
multiple attributes with the same name.

• need to rename them

• Example:

• We may also choose to rename attributes for the sake of clarity.

MeetsIn(course_name, room_name)

MeetsIn(name, name)

end timestart timename

Meets InCourse

capacityname

Room

Special Case: Many-to-One Relationship Sets

• Ordinarily, a binary relationship set will produce three relations:

• one for the relationship set

• one for each of the connected entity sets

• Example:

MeetsIn(course_name, room_name)
Course(name, start_time, end_time)
Room(name, capacity)

end timestart timename

Meets InCourse

capacityname

Room

Special Case: Many-to-One Relationship Sets (cont.)

• However, if a relationship set is many-to-one, we often:

• eliminate the relation for the relationship set

• capture the relationship set in the relation used for the
entity set on the many side of the relationship

MeetsIn(course_name, room_name)
Course(name, start_time, end_time, room_name)
Room(name, capacity)

end timestart timename

Meets InCourse

capacityname

Room

Special Case: Many-to-One Relationship Sets (cont.)

• Advantages of this approach:
• makes some types of queries more efficient to execute
• uses less space

…name

cscie50b

cscie119

cscie160

cscie268

room_namecourse_name

Sci Ctr Bcscie50b

Sever 213cscie119

Sci Ctr Acscie160

Sci Ctr Acscie268

Course MeetsIn

room_name…name

Sci Ctr Bcscie50b

Sever 213cscie119

Sci Ctr Acscie160

Sci Ctr Acscie268

Course

Special Case: Many-to-One Relationship Sets (cont.)

• If one or more entities don't participate in the relationship,
there will be null attributes for the fields that capture the
relationship:

• If a large number of entities don't participate in the relationship,
it may be better to use a separate relation.

room_name…name

Sci Ctr Bcscie50b

Sever 213cscie119

Sci Ctr Acscie160

Sci Ctr Acscie268

NULLcscie160

Course

Special Case: One-to-One Relationship Sets

• Here again, we're able to have only two relations –
one for each of the entity sets.

• In this case, we can capture the relationship set in the relation
used for either of the entity sets.

• Example:

• which of these would probably make more sense?

nameid officename

Person(id, name, chaired_dept)
Department(name, office)

Person DepartmentChairs

Person(name, id)
Department(name, office, chair_id)OR

• For many-to-many relationship sets, we need to use
a separate relation for the relationship set.

• example:

• can't capture the relationships in the Student table

• a given student can be enrolled in multiple courses

• can't capture the relationships in the Course table

• a given course can have multiple students enrolled in it

• need to use a separate table:

Enrolled(student_id, course_name, credit_status)

Many-to-Many Relationship Sets

Recall: Primary Key

• We typically choose one of the candidate keys as the primary key.

• In an ER diagram, we underline the primary key attribute(s).

• In the relational model, we also designate a primary key
by underlying it.

Person(id, name, address, …)

• A relational DBMS will ensure that no two rows have
the same value / combination of values for the primary key.

• known as a uniqueness constraint

address emailname

Person

id age

• When translating an entity set to a relation,
the relation gets the same primary key as the entity set.

 Student(id, …)

 Course(name, …)

Studentid

Course name

Primary Keys of Relations for Entity Sets

• When translating a relationship set to a relation,
the primary key depends on the cardinality constraints.

• For a many-to-many relationship set, we take the union
of the primary keys of the connected entity sets.

 Enrolled(student_id, course_name, credit_status)

• doing so prevents a given combination of entities
from appearing more than once in the relation

• it still allows a single entity (e.g., a single student or course)
to appear multiple times, as part of different combinations

Primary Keys of Relations for Relationship Sets

EnrolledStudent Courseid name

credit status

• For a many-to-one relationship set,
if we decide to use a separate relation for it,
what should that relation's primary key include?

 Borrows(person_id, isbn)

Primary Keys of Relations for Relationship Sets (cont.)

BorrowsPerson Bookid isbn

• For a many-to-one relationship set,
if we decide to use a separate relation for it,
what should that relation's primary key include?

 Borrows(person_id, isbn)

• limiting the primary key enforces the cardinality constraint

• in this example, the DBMS will ensure that a given book
is borrowed by at most once person

• how else could we capture this relationship set?

Primary Keys of Relations for Relationship Sets (cont.)

BorrowsPerson Bookid isbn

• For a one-to-one relationship set, what should the primary key
of the resulting relation be?

 Chairs(person_id, department_name)

Primary Keys of Relations for Relationship Sets (cont.)

Foreign Keys

• A foreign key is attribute(s) in one relation that take on values
from the primary-key attribute(s) of another relation.

• example: MajorsIn has two foreign keys

• We use foreign keys to capture relationships between entities.

• All values of a foreign key must match the referenced
attribute(s) of some tuple in the other relation.

• known as a referential integrity constraint

…nameid
...Jill Jones12345678

...Alan Turing25252525

.........

departmentstudent
computer science12345678

english12345678

......

Student Department

MajorsIn

…name
...computer science

...english

......

Enforcing Constraints

• Example: assume that the tables below show all of their tuples.

• Which of the following operations would the DBMS allow?

• adding (12345678, 'John Smith', …) to Student

• adding (33333333, 'Howdy Doody', …) to Student

• adding (12345678, 'physics') to MajorsIn

• adding (25252525, 'english') to MajorsIn

…nameid
...Jill Jones12345678

...Alan Turing25252525

dept_namestudent
computer science12345678

english12345678

Student Department

MajorsIn

…name
...computer science

...english

Relational Algebra and SQL

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

Example Domain: a University

• Four relations that store info. about a type of entity:
Student(id, name)
Department(name, office)
Room(id, name, capacity)
Course(name, start_time, end_time, room_id)

• Two relations that capture relationships between entities:
MajorsIn(student_id, dept_name)
Enrolled(student_id, course_name, credit_status)

• The room_id attribute in the Course relation also captures
a relationship – the relationship between a course and the
room in which it meets.

nameid

Jill Jones12345678

Alan Turing25252525

Audrey Chu33566891

Jose Delgado45678900

Count Dracula66666666

dept_namestudent_id
comp sci12345678

mathematics45678900

comp sci25252525

english45678900

the occult66666666

capacitynameid
1000Sanders Theatre1000

50Sever 1112000

100Sever 2133000

300Sci Ctr A4000

500Sci Ctr B5000

500Emerson 1056000

30Sci Ctr 1107000

officename

MD 235comp sci

Sci Ctr 520mathematics

The Dungeonthe occult

Sever 125english

room_idend_timestart_timename

400021:35:0019:35:00cscie119

200021:35:0019:35:00cscie268

700017:30:0016:00:00cs165

700019:30:0017:30:00cscie275

credit_statuscourse_namestudent_id
ugradcscie26812345678

ugradcs16525252525

gradcscie11945678900

non-creditcscie26833566891

gradcscie27545678900

Student Room

Course Department

Enrolled MajorsIn

Relational Algebra

• The query language proposed by Codd.

• a collection of operations on relations

• Each operation:

• takes one or more relations

• produces a relation

• Relations are treated as sets.

• all duplicate tuples are removed from an operation's result

operation a relationone or more
relations

Selection

• What it does: selects tuples from a relation that match a predicate
• predicate = condition

• Syntax: predicate(relation)

• Example: Enrolled

credit_status = 'graduate'(Enrolled) =

• Predicates may include: >, <, =, !=, etc., as well as and, or, not

credit_statuscourse_namestudent_id

graduatecscie26845678900

graduatecscie11945678900

credit_statuscourse_namestudent_id

undergradcscie50b12345678

undergradcscie16025252525

graduatecscie26845678900

non-creditcscie11933566891

graduatecscie11945678900

Projection

• What it does: extracts attributes from a relation

• Syntax: attributes(relation)

• Example: Enrolled

student_id, credit_status(Enrolled) =

credit_statuscourse_namestudent_id

undergradcscie50b12345678

undergradcscie16025252525

graduatecscie26845678900

non-creditcscie11933566891

graduatecscie11945678900

credit_statusstudent_id

undergrad12345678

undergrad25252525

graduate45678900

non-credit33566891

graduate45678900

duplicates, so we
keep only one

credit_statusstudent_id

undergrad12345678

undergrad25252525

graduate45678900

non-credit33566891

Combining Operations

• Since each operation produces a relation, we can combine them.

• Example: Enrolled

student_id, credit_status(credit_status = 'graduate'(Enrolled)) =

credit_statusstudent_id

graduate45678900

graduate45678900

credit_statusstudent_id

graduate45678900

credit_statuscourse_namestudent_id

undergradcscie50b12345678

undergradcscie16025252525

graduatecscie26845678900

non-creditcscie11933566891

graduatecscie11945678900

credit_statuscourse_namestudent_id

graduatecscie26845678900

graduatecscie11945678900

Mathematical Foundations: Cartesian Product
• Let: A be the set of values { a1, a2, … }

B be the set of values { b1, b2, … }

• The Cartesian product of A and B (written A x B) is the set of
all possible ordered pairs (ai, bj), where ai A and bj B.

• Example:
A = { apple, pear, orange }
B = { cat, dog }

A x B = { (apple, cat), (apple, dog), (pear, cat), (pear, dog),
(orange, cat), (orange, dog) }

• Example:
C = { 5, 10 }
D = { 2, 4 }

C x D = ?

Mathematical Foundations: Cartesian Product (cont.)

• We can also take the Cartesian product of three of more sets.

• A x B x C is the set of all possible ordered triples
(ai, bj, ck), where ai A, bj B, and ck C.

• example:
C = { 5, 10 }
D = { 2, 4 }
E = {'hi', 'there'}

C x D x E = { (5, 2, 'hi'), (5, 2, 'there'),
(5, 4, 'hi'), (5, 4, 'there'),
(10, 2, 'hi'), (10, 2, 'there'),
(10, 4, 'hi'), (10, 4, 'there') }

• A1 x A2 x … x An is the set of all possible ordered tuples
(a1i, a2j, …, ank), where ade Ad.

Cartesian Product in Relational Algebra

• What it does: takes two relations, R1 and R2, and forms
a new relation containing all possible combinations of
tuples from R1 with tuples from R2

• Syntax: R1 x R2

• Rules:

• R1 and R2 must have different names

• the resulting relation has a schema that consists of
the attributes of R1 followed by the attributes of R2

(a11, a12, …, a1m) x (a21, …, a2n) (a11, …, a1m, a21, …, a2n)

• if there are two attributes with the same name,
we prepend the name of the original relation

• example: the attributes of Enrolled x MajorsIn would be

(Enrolled.student_id, course_name, credit_status,
MajorsIn.student_id, dept_name)

Cartesian Product in Relational Algebra (cont.)

• Example:
Enrolled MajorsIn

Enrolled x MajorsIn

credit_statuscourse_namestudent_id
undergradcscie50b12345678

undergradcscie16045678900

graduatecscie26845678900

non-creditcscie11933566891

graduatecscie11925252525

dept_namestudent_id
comp sci12345678

mathematics45678900

comp sci33566891

english98765432

the occult66666666

dept_nameMajorsIn.
student_id

credit_statuscourse_nameEnrolled.
student_id

comp sci12345678undergradcscie50b12345678

mathematics45678900undergradcscie50b12345678

comp sci33566891undergradcscie50b12345678

english98765432undergradcscie50b12345678

the occult66666666undergradcscie50b12345678

comp sci12345678undergradcscie16045678900

mathematics45678900undergradcscie16045678900
...............

Rename

• What it does: gives a (possibly new) name to a relation,
and optionally to its attributes

• Syntax: rel_name(relation)

rel_name(A1, A2, …, An)(relation)

• Examples:
• renaming to allow us to take the Cartesian product of a

relation with itself:

E1(Enrolled) x E2(Enrolled)

• renaming to give a name to the result of an operation:

room = BigRoom.name (Course x BigRoom(capacity > 200(Room))

Natural Join

• What it does: performs a "filtered" Cartesian product
• filters out / removes the tuples in which attributes with

the same name have different values

• Syntax: R1 R2

• Example:
R1 R2 R1 R2

ihg
410foo

520bar

630baz

jihg
100410foo

600520bar

gji
foo1004

bop3004

baz4005

bar6005

Performing the Natural Join

• Step 1: take the full Cartesian product

• Example:

R1 R2

ihg
410foo

520bar

630baz

gji
foo1004

bop3004

baz4005

bar6005

R1 x R2

R2.gjR2.iR1.ihR1.g
foo1004410foo

bop3004410foo

baz4005410foo

bar6005410foo

foo1004520bar

bop3004520bar

baz4005520bar

bar6005520bar

foo1004630baz

bop3004630baz

baz4005630baz

bar6005630baz

Performing the Natural Join

• Step 2: perform a selection that filters out tuples in which
attributes with the same name have different values

• if there are no attributes with the same name, skip this step

• Example:

R1 R2

ihg
410foo

520bar

630baz

gji
foo1004

bop3004

baz4005

bar6005

R2.gjR2.iR1.ihR1.g
foo1004410foo

bar6005520bar

Performing the Natural Join

• Step 3: perform a projection that keeps only one copy of each
duplicated column.

• Example:

R1 R2

ihg
410foo

520bar

630baz

gji
foo1004

bop3004

baz4005

bar6005

R2.gjR2.iR1.ihR1.g
foo1004410foo

bar6005520bar

jihg
100410foo

600520bar

Performing the Natural Join

• Final result: a table with all combinations of "matching" rows
from the original tables.

• Example:

R1 R2 R1 R2

ihg
410foo

520bar

630baz

jihg
100410foo

600520bar

gji
foo1004

bop3004

baz4005

bar6005

Natural Join: Summing Up

• The natural join is equivalent to the following:

• Cartesian product, then selection, then projection

• The resulting relation’s schema consists of the attributes of
R1 x R2, but with common attributes included only once

(a, b, c) x (a, d, c, f) (a, b, c, d, f)

• If there are no common attributes, R1 R2 = R1 x R2

Condition Joins (aka Theta Joins)

• What it does: performs a "filtered" Cartesian product according
to a specified predicate

• Syntax: R1 R2 , where is a predicate

• Fundamental-operation equivalent: cross, select using

• Example: R1 (d > c) R2 = ?

R1 R2 R1 (d > c) R2

edcba
4005410foo

6006410foo

6006520bar

cba
410foo

520bar

630baz

ed
1003

3004

4005

6006

Which of these queries finds the names
of all courses taken by comp sci majors?

Enrolled MajorsIn

A. course_name(dept_name = 'comp sci'(Enrolled x MajorsIn))

B. course_name(dept_name = 'comp sci'(Enrolled MajorsIn))

C.course_name(Enrolled dept_name = 'comp sci' MajorsIn))

D.course_name(Enrolled (dept_name = 'comp sci'(MajorsIn)))

dept_namestudent_id
comp sci12345678

mathematics45678900

comp sci33566891

english98765432

the occult66666666

credit_statuscourse_namestudent_id
undergradcscie50b12345678

undergradcscie16045678900

graduatecscie26845678900

non-creditcscie11933566891

graduatecscie11925252525

If there is more than one correct answer, select all answers that apply.

Which of these queries finds the names
of all courses taken by comp sci majors?

Enrolled MajorsIn

A. course_name(dept_name = 'comp sci'(Enrolled x MajorsIn))

B. course_name(dept_name = 'comp sci'(Enrolled MajorsIn))

C.course_name(Enrolled dept_name = 'comp sci' MajorsIn))

D.course_name(Enrolled (dept_name = 'comp sci'(MajorsIn)))

dept_namestudent_id
comp sci12345678

mathematics45678900

comp sci33566891

english98765432

the occult66666666

credit_statuscourse_namestudent_id
undergradcscie50b12345678

undergradcscie16045678900

graduatecscie26845678900

non-creditcscie11933566891

graduatecscie11925252525

Which courses should we be finding?

A. course_name(dept_name = 'comp sci'(Enrolled x MajorsIn))

course_name
cscie50b

cscie50b

cscie160

cscie160

cscie268

cscie268

cscie119

cscie119

cscie119

cscie119

course_name
cscie50b

cscie160 x

cscie268 x

cscie119

dept_nameMajorsIn.
student_id

credit_statuscourse_nameEnrolled.
student_id

comp sci12345678undergradcscie50b12345678

comp sci33566891undergradcscie50b12345678

comp sci12345678undergradcscie16045678900

comp sci33566891undergradcscie16045678900

comp sci12345678graduatecscie26845678900

comp sci33566891graduatecscie26845678900

comp sci12345678non-creditcscie11933566891

comp sci33566891non-creditcscie11933566891

comp sci12345678graduatecscie11925252525

comp sci33566891graduatecscie11925252525

In the Cartesian product,
the MajorsIn tuples
for the comp sci majors
are each combined with
every Enrolled tuple,
so we end up getting
every course in Enrolled,
not just the ones taken
by comp sci majors.

Enrolled MajorsIn

Enrolled MajorsIn

dept_namestudent_id
comp sci12345678

mathematics45678900

comp sci33566891

english98765432

the occult66666666

credit_statuscourse_namestudent_id
undergradcscie50b12345678

undergradcscie16045678900

graduatecscie26845678900

non-creditcscie11933566891

graduatecscie11925252525

B. course_name(dept_name = 'comp sci'(Enrolled MajorsIn))

dept_namecredit_statuscourse_namestudent_id

comp_sciundergradcscie50b12345678

mathematicsundergradcscie16045678900

mathematicsgraduatecscie26845678900

comp scinon-creditcscie11933566891

dept_namecredit_statuscourse_namestudent_id

comp_sciundergradcscie50b12345678

comp scinon-creditcscie11933566891

dept_name = 'comp sci'

course_name

cscie50b

cscie119

course_name

This query obtains the
correct result.

Which of these queries finds the names
of all courses taken by comp sci majors?

Enrolled MajorsIn

A. course_name(dept_name = 'comp sci'(Enrolled x MajorsIn))

B. course_name(dept_name = 'comp sci'(Enrolled MajorsIn))

C.course_name(Enrolled dept_name = 'comp sci' MajorsIn))

D.course_name(Enrolled (dept_name = 'comp sci'(MajorsIn)))

dept_namestudent_id
comp sci12345678

mathematics45678900

comp sci33566891

english98765432

the occult66666666

credit_statuscourse_namestudent_id
undergradcscie50b12345678

undergradcscie16045678900

graduatecscie26845678900

non-creditcscie11933566891

graduatecscie11925252525

A and C
are

equivalent!

Enrolled dept_name = 'comp sci'(MajorsIn)

Enrolled (dept_name = 'comp sci'(MajorsIn))

D. course_name(Enrolled (dept_name = 'comp sci'(MajorsIn)))

dept_namestudent_id
comp sci12345678

comp sci33566891

credit_statuscourse_namestudent_id
undergradcscie50b12345678

undergradcscie16045678900

graduatecscie26845678900

non-creditcscie11933566891

graduatecscie11925252525

dept_namecredit_statuscourse_namestudent_id

comp_sciundergradcscie50b12345678

comp scinon-creditcscie11933566891

course_name

cscie50b

cscie119

course_name

This query obtains the
correct result.

Which of these queries finds the names
of all courses taken by comp sci majors?

Enrolled MajorsIn

A. course_name(dept_name = 'comp sci'(Enrolled x MajorsIn))

B. course_name(dept_name = 'comp sci'(Enrolled MajorsIn))

C.course_name(Enrolled dept_name = 'comp sci' MajorsIn))

D.course_name(Enrolled (dept_name = 'comp sci'(MajorsIn)))

dept_namestudent_id
comp sci12345678

mathematics45678900

comp sci33566891

english98765432

the occult66666666

credit_statuscourse_namestudent_id
undergradcscie50b12345678

undergradcscie16045678900

graduatecscie26845678900

non-creditcscie11933566891

graduatecscie11925252525

B and D are
equivalent –
and correct!

Joins and Unmatched Tuples

• Let’s say we want to know the majors of all enrolled students –
including those with no major. We begin by trying natural join:
Enrolled MajorsIn

Enrolled MajorsIn

• Why isn’t this sufficient?

credit_statuscourse_namestudent_id
undergradcscie50b12345678

undergradcscie16045678900

graduatecscie26845678900

non-creditcscie11933566891

graduatecscie11925252525

dept_namestudent_id
comp sci12345678

mathematics45678900

comp sci33566891

english98765432

the occult66666666

dept_namecredit_statuscourse_namestudent_id
comp sciundergradcscie50b12345678

mathematicsundergradcscie16045678900

mathematicsgraduatecscie26845678900

comp scinon-creditcscie11933566891

Outer Joins

• Outer joins allow us to include unmatched tuples in the result.

• Left outer join (R1 R2): in addition to the natural-join tuples,
include an extra tuple for each tuple from R1 with no match in R2

• in the extra tuples, give the R2 attributes values of null
Enrolled MajorsIn

Enrolled MajorsIn

credit_statuscourse_namestudent_id
undergradcscie50b12345678

undergradcscie16045678900

graduatecscie26845678900

non-creditcscie11933566891

graduatecscie11925252525

dept_namestudent_id
comp sci12345678

mathematics45678900

comp sci33566891

english98765432

the occult66666666

dept_namecredit_statuscourse_namestudent_id
comp sciundergradcscie50b12345678

mathematicsundergradcscie16045678900

mathematicsgraduatecscie26845678900

comp scinon-creditcscie11933566891

nullgraduatecscie11925252525

Outer Joins (cont.)

• Right outer join (R1 R2): include an extra tuple for each tuple
from R2 with no match in R1

Enrolled MajorsIn

Enrolled MajorsIn

credit_statuscourse_namestudent_id
undergradcscie50b12345678

undergradcscie16045678900

graduatecscie26845678900

non-creditcscie11933566891

graduatecscie11925252525

dept_namestudent_id
comp sci12345678

mathematics45678900

comp sci33566891

english98765432

the occult66666666

dept_namecredit_statuscourse_namestudent_id
comp sciundergradcscie50b12345678

mathematicsundergradcscie16045678900

mathematicsgraduatecscie26845678900

comp scinon-creditcscie11933566891

englishnullnull98765432

the occultnullnull66666666

Outer Joins (cont.)

• Full outer join (R1 R2): include an extra tuple for each tuple
from either relation with no match in the other relation
Enrolled MajorsIn

Enrolled MajorsIn

credit_statuscourse_namestudent_id
undergradcscie50b12345678

undergradcscie16045678900

graduatecscie26845678900

non-creditcscie11933566891

graduatecscie11925252525

dept_namestudent_id
comp sci12345678

mathematics45678900

comp sci33566891

english98765432

the occult66666666

dept_namecredit_statuscourse_namestudent_id
comp sciundergradcscie50b12345678

mathematicsundergradcscie16045678900

mathematicsgraduatecscie26845678900

comp scinon-creditcscie11933566891

nullgraduatecscie11925252525

englishnullnull98765432

the occultnullnull66666666

Set Difference

• What it does: selects tuples that are in one relation
but not in another.

• Syntax: R1 R2

• Rules:

• the relations must have the same number of attributes,
and corresponding attributes must have the same domain

• the resulting relation inherits its attribute names from the
first relation

• duplicates are eliminated, since relational algebra treats
relations as sets

Set Difference (cont.)

• Example:
Enrolled MajorsIn

student_id(MajorsIn) student_id(Enrolled)

credit_statuscourse_namestudent_id
undergradcscie50b12345678

undergradcscie16045678900

graduatecscie26845678900

non-creditcscie11933566891

graduatecscie11925252525

dept_namestudent_id
comp sci12345678

mathematics45678900

comp sci33566891

english98765432

the occult66666666

student_id
98765432

66666666

Set Difference (cont.)

• Example of where set difference is required:

Of the students enrolled in courses, which ones are
not enrolled in any courses for graduate credit?

• The following query does not work. Why?

student_id (credit_status != 'graduate'(Enrolled))

• This query does work:

student_id (Enrolled) – student_id (credit_status = 'graduate'(Enrolled))

credit_statuscourse_namestudent_id
undergradcscie50b12345678

undergradcscie16045678900

graduatecscie26845678900

non-creditcscie11933566891

graduatecscie11925252525

Assignment

• What it does: assigns the result of an operation to a temporary
variable, or to an existing relation

• Syntax: relation rel. alg. expression

• Uses:
• simplying complex expressions

• example: recall this expression

room = BigRoom.name (Course x BigRoom(capacity > 200(Room))

• simpler version using assignment:

BigRoom capacity > 200(Room)

room = BigRoom.name (Course x BigRoom))

SQL

• Structured Query Language

• The query language used by most RDBMSs.

• Originally developed at IBM as part of System R –
one of the first RDBMSs.

SELECT

• Used to implement most of the relational-algebra operations

• Basic syntax:
SELECT a1, a2, …
FROM R1, R2, …
WHERE selection predicate;

• Relational-algebra equivalent: cross, select, project
1) take the cartesian product R1 x R2 x …

2) perform a selection that selects tuples from the cross
product that satisfy the predicate in the WHERE clause

3) perform a projection of attributes a1, a2, … from the
tuples selected in step 2, leaving duplicates alone by default

(These steps tell us what tuples will appear in the resulting relation, but
the command may be executed differently for the sake of efficiency.)

• Note: the SELECT clause by itself specifies a projection!
The WHERE clause specifies a selection.

Example Query

• Given these relations:
Student(id, name)
Enrolled(student_id, course_name, credit_status)
MajorsIn(student_id, dept_name)

we want find the major of the student Alan Turing.

• Here's a query that will give us the answer:

SELECT dept_name
FROM Student, MajorsIn
WHERE name = 'Alan Turing'

AND id = student_id;

Student MajorsIn

Student x MajorsIn

nameid
Jill Jones12345678

Alan Turing25252525

Audrey Chu33566891

Jose Delgado45678900

Count Dracula66666666

dept_namestudent_id
comp sci12345678

mathematics45678900

comp sci25252525

english45678900

the occult66666666

dept_namestudent_idnameid

comp sci12345678Jill Jones12345678

mathematics45678900Jill Jones12345678

comp sci25252525Jill Jones12345678

english45678900Jill Jones12345678

the occult66666666Jill Jones12345678

comp sci12345678Alan Turing25252525

mathematics45678900Alan Turing25252525

comp sci25252525Alan Turing25252525

english45678900Alan Turing25252525

............

SELECT dept_name
FROM Student, MajorsIn
WHERE name = 'Alan Turing' AND id = student_id;

Student MajorsIn

Student x MajorsIn WHERE id = student_id

nameid
Jill Jones12345678

Alan Turing25252525

Audrey Chu33566891

Jose Delgado45678900

Count Dracula66666666

dept_namestudent_id
comp sci12345678

mathematics45678900

comp sci25252525

english45678900

the occult66666666

dept_namestudent_idnameid

comp sci12345678Jill Jones12345678

comp sci25252525Alan Turing25252525

mathematics45678900Jose Delgado45678900

english45678900Jose Delgado45678900

the occult66666666Count Dracula66666666

SELECT dept_name
FROM Student, MajorsIn
WHERE name = 'Alan Turing' AND id = student_id;

Student MajorsIn

After selecting only tuples that satisfy the WHERE clause:

After extracting the attribute specified in the SELECT clause:

nameid
Jill Jones12345678

Alan Turing25252525

Audrey Chu33566891

Jose Delgado45678900

Count Dracula66666666

dept_namestudent_id
comp sci12345678

mathematics45678900

comp sci25252525

english45678900

the occult66666666

dept_namestudent_idnameid

comp sci25252525Alan Turing25252525

dept_name
comp sci

SELECT dept_name
FROM Student, MajorsIn
WHERE name = 'Alan Turing' AND id = student_id;

Join Conditions

• Here's the query from the previous problem:
SELECT dept_name
FROM Student, MajorsIn
WHERE name = 'Alan Turing'

AND id = student_id;

• id = student_id is a join condition – a condition that
is used to match up "related" tuples from the two tables.

• it selects the tuples in the Cartesian product that "make sense"

• for N tables, you typically need N – 1 join conditions

Student MajorsIn
nameid
Jill Jones12345678

Alan Turing25252525

Audrey Chu33566891

Jose Delgado45678900

Count Dracula66666666

dept_namestudent_id
comp sci12345678

mathematics45678900

comp sci25252525

english45678900

the occult66666666

Selecting Entire Columns

• If there's no WHERE clause, the result will consist of one or
more entire columns. No rows will be excluded.

SELECT student_id
FROM Enrolled;

Enrolled

student_id

12345678

25252525

45678900

33566891

45678900

SELECT
student_id

credit_statuscourse_namestudent_id

ugradCS 10512345678

ugradCS 11125252525

gradCS 46045678900

non-creditCS 10533566891

gradCS 51045678900

Selecting Entire Rows

• If we want the result to include entire rows (i.e., all of the
columns), we use a * in the SELECT clause:

SELECT *
FROM Enrolled
WHERE credit_status = 'grad';

WHERE credit_status = 'grad';

Enrolled

credit_statuscourse_namestudent_id

ugradCS 10512345678

ugradCS 11125252525

gradCS 46045678900

non-creditCS 10533566891

gradCS 51045678900

credit_statuscourse_namestudent_id

gradCS 46045678900

gradCS 51045678900

The WHERE Clause

SELECT column1, column2, …
FROM table1, table2, …
WHERE selection predicate;

• The selection predicate in the WHERE clause must consist of
an expression that evaluates to either true or false.

• The predicate can include:

• the name of any column from the table(s)
mentioned in the FROM clause

• literal values (e.g., 'graduate' or 100)

• the standard comparison operators:
=, !=, >, <, <=, >=

• the logical operators AND, OR, and NOT

• other special operators, including ones
for pattern matching and handling null values

Notes:
• use single quotes for

string literals
• use = (instead of ==)

to test for equality

Comparisons Involving Pattern Matching

• Let's say that we're interested in getting the names and rooms
of all CS courses.

• we know that the names will all begin with 'cs'

• we need to find courses with names that match this pattern

• Here's how:

SELECT name, room_id
FROM Course
WHERE name LIKE 'cs%';

• When pattern matching, we use the LIKE operator
and a string that includes one or more wildcard characters:

• % stands for 0 or more arbitrary characters

• _ stands for a single arbitrary character

• Can also use NOT LIKE to search for the absence of a pattern.

More Examples of Pattern Matching

• What are the results of each query?
SELECT name

FROM Student
WHERE name LIKE '%u%';

SELECT name
FROM Student
WHERE name LIKE '__u%';

SELECT name
FROM Student
WHERE name LIKE '%u';

nameid
Jill Jones12345678

Alan Turing25252525

Audrey Chu33566891

Jose Delgado45678900

Count Dracula66666666

Student

2 underscores

Comparisons Involving NULL

• Because NULL is a special value, any comparison involving
NULL that uses the standard operators is always false.

• For example, all of the following will always be false:
room = NULL NULL != 10

room != NULL NULL = NULL

• This is useful for cases like the following:

• assume that we add a
country column to Student

• use NULL for students
whose country is unknown

• to get all students
from a foreign country:
SELECT name
FROM Student
WHERE country != 'USA'; // won't include NULLs

countrynameid
USAJill Jones12345678

UKAlan Turing25252525

ChinaAudrey Chu33566891

USAJose Delgado45678900

NULLCount Dracula66666666

Comparisons Involving NULL (cont.)

• To test for the presence or absence of a NULL value,
use special operators:

IS NULL
IS NOT NULL

• Example: find students whose country is unknown
SELECT name
FROM Student
WHERE country IS NULL;

Removing Duplicates

• By default, a SELECT command may produce duplicates

• To eliminate them, add the DISTINCT keyword:

SELECT DISTINCT column1, column2, …

Avoiding Ambiguous Column Names

• Let's say that we want to find the name and credit status of all
students enrolled in cs165 who are majoring in comp sci.

• We need the following tables:
Student(id, name)
Enrolled(student_id, course_name, credit_status)
MajorsIn(student_id, dept_name)

• Here's the query:
SELECT name, credit_status
FROM Student, Enrolled, MajorsIn

WHERE id = Enrolled.student_id
AND Enrolled.student_id = MajorsIn.student_id
AND course_name = 'cs165'
AND dept_name = 'comp sci';

• If a column name appears in more than one table in the
FROM clause, we must prepend the table name.

Renaming Attributes or Tables

• Use the keyword AS:
SELECT name AS student, credit_status
FROM Student, Enrolled AS E, MajorsIn AS M
WHERE id = E.student_id
AND E.student_id = M.student_id
AND course_name = 'cs165'
AND dept_name = 'comp sci';

credit_statusstudent
undergradJill Jones

non-creditAlan Turing

……

Renaming Attributes or Tables (cont.)

• Renaming allows us to cross a relation with itself:
SELECT name
FROM Student, Enrolled AS E1, Enrolled AS E2
WHERE id = E1.student_id AND id = E2.student_id
AND E1.course_name = 'CS 105'
AND E2.course_name = 'CS 111';

• what does this find?

• The use of AS is optional when defining an alias.

• I often use an alias even when it's not strictly necessary:
SELECT S.name
FROM Student S, Enrolled E1, Enrolled E2
WHERE S.id = E1.student_id AND S.id = E2.student_id
AND E1.course_name = 'CS 105'
AND E2.course_name = 'CS 111';

Aggregate Functions

• The SELECT clause can include an aggregate function, which
performs a computation on a collection of values of an attribute.

• Example: find the average capacity of rooms in the Sci Ctr:
SELECT AVG(capacity)
FROM Room
WHERE name LIKE 'Sci Ctr%';

Room

WHERE

AVG(capacity)
276.7

AVG

capacitynameid
1000Sanders Theatre1000

50Sever 1112000

100Sever 2133000

300Sci Ctr A4000

500Sci Ctr B5000

500Emerson 1056000

30Sci Ctr 1107000

capacitynameid
300Sci Ctr A4000

500Sci Ctr B5000

30Sci Ctr 1107000

Aggregate Functions (cont.)

• Possible functions include:

• MIN, MAX: find the minimum/maximum of a value
• AVG, SUM: compute the average/sum of numeric values
• COUNT: count the number of values

• For AVG, SUM, and COUNT, we can add the keyword
DISTINCT to perform the computation on all distinct values.

• example: find the number of students enrolled for courses:
SELECT COUNT(DISTINCT student)
FROM Enrolled;

Aggregate Functions (cont.)

• SELECT COUNT(*) will count the number of tuples in the result
of the select command.

• example: find the number of CS courses
SELECT COUNT(*)
FROM Course
WHERE name LIKE 'cs%';

• COUNT(attribute) counts the number of non-NULL values
of attribute, so it won't always be equivalent to COUNT(*)

• Aggregate functions cannot be used in the WHERE clause.

• Another example: write a query to find the largest capacity
of any room in the Science Center:

SELECT MAX(capacity)
FROM Room
WHERE name LIKE 'Sci Ctr%';

Aggregate Functions (cont.)

• What if we wanted the name of the room with the max. capacity?

• The following will not work!
SELECT name, MAX(capacity)
FROM Room
WHERE name LIKE 'Sci Ctr%';

• In general, you can’t mix
aggregate functions with
column names in the
SELECT clause.

MAX(capacity)
500

MAX

name
Sci Ctr A

Sci Ctr B

Sci Ctr 110

name

Room

WHERE

capacitynameid
1000Sanders Theatre1000

50Sever 1112000

100Sever 2133000

300Sci Ctr A4000

500Sci Ctr B5000

500Emerson 1056000

30Sci Ctr 1107000

capacitynameid
300Sci Ctr A4000

500Sci Ctr B5000

30Sci Ctr 1107000

don't have same
number of rows;

error!

Subqueries

• We can use a subquery to solve the previous problem:
SELECT name, capacity
FROM Room
WHERE name LIKE 'Sci Ctr%'

AND capacity = (SELECT MAX(capacity)
FROM Room
WHERE name LIKE 'Sci Ctr%');

SELECT name, capacity
FROM Room
WHERE name LIKE 'Sci Ctr%'

AND capacity = 500;

the subquery

Note Carefully!

• In this case, we need the condition involving the room name
in both the subquery and the outer query:

SELECT name, capacity
FROM Room
WHERE name LIKE 'Sci Ctr%'

AND capacity = (SELECT MAX(capacity)
FROM Room
WHERE name LIKE 'Sci Ctr%');

• if we remove it from the subquery,
might not get the largest capacity in Sci Ctr

• if we remove it from the outer query,
might also get rooms from other buildings

• ones that have the max capacity found by the subquery,
but are not in Sci Ctr

the subquery

Subqueries and Set Membership

• Subqueries can be used to test for set membership in
conjunction with the IN and NOT IN operators.

• example: find all students who are not enrolled in CSCI E-268
SELECT name
FROM Student
WHERE id NOT IN (SELECT student_id

FROM Enrolled
WHERE course_name = 'cscie268');

nameid

Jill Jones12345678

Alan Turing25252525

Audrey Chu33566891

Jose Delgado45678900

Count Dracula66666666

Student
EnrolledEnrolled

student_id
12345678

33566891

subquery
name

Alan Turing

Jose Delgado

Count Dracula

credit_statuscourse_namestudent_id
ugradcscie26812345678

ugradcs16525252525

gradcscie11945678900

non-creditcscie26833566891

gradcscie27545678900

Applying an Aggregate Function to Subgroups

• A GROUP BY clause allows us to:

• group together tuples that have a common value

• apply an aggregate function to the tuples in each subgroup

• Example: find the enrollment of each course:
SELECT course_name, COUNT(*)
FROM Enrolled
GROUP BY course_name;

• When you group by an attribute, you can include it
in the SELECT clause with an aggregate function.

• because we’re grouping by that attribute, every tuple
in a given group will have the same value for it

Evaluating a query with GROUP BY

SELECT course_name, COUNT(*)
FROM Enrolled
GROUP BY course_name;

credit_statuscourse_namestudent
ugradcscie26812345678

non-creditcscie26833566891

ugradcscie26866666666

gradcscie11945678900

ugradcscie11925252525

gradcscie27545678900

credit_statuscourse_namestudent
ugradcscie26812345678

gradcscie11945678900

gradcscie27545678900

non-creditcscie26833566891

ugradcscie26866666666

ugradcscie11925252525

COUNT(*)course_name
3cscie268

2cscie119

1cscie275

Applying a Condition to Subgroups

• A HAVING clause allows us to apply a selection condition
to the subgroups produced by a GROUP BY clause.

• example: find enrollments of courses with at least 2 students
SELECT course_name, COUNT(*)
FROM Enrolled
GROUP BY course_name
HAVING COUNT(*) > 1;

Enrolled result of the query

• Important difference:
• a WHERE clause is applied before grouping
• a HAVING clause is applied after grouping

credit_statuscourse_namestudent
ugradcscie26812345678

non-creditcscie26833566891

ugradcscie26866666666

gradcscie11945678900

ugradcscie11925252525

gradcscie27545678900

COUNT(*)course_name
3cscie268

2cscie119

Sorting the Results
• An ORDER BY clause sorts the tuples in the result of the query

by one or more attributes.
• ascending order by default

• example:
SELECT name, capacity
FROM Room
WHERE capacity >= 500
ORDER BY capacity;

capacityname
500Sci Ctr B

500Emerson 105

1000Sanders Theatre

Sorting the Results (cont.)
• An ORDER BY clause sorts the tuples in the result of the query

by one or more attributes.
• ascending order by default, use DESC to get descending
• attributes after the first one are used to break ties
• example:
SELECT name, capacity
FROM Room
WHERE capacity >= 500
ORDER BY capacity DESC, name;

capacityname
1000Sanders Theatre

500Emerson 105

500Sci Ctr B

Finding the Majors of Enrolled Students
• We want the IDs and majors of every student who

is enrolled in a course – including those with no major.

• Desired result:

• Relational algebra:student_id, dept_name(Enrolled MajorsIn)

• SQL: SELECT DISTINCT Enrolled.student_id, dept_name
FROM Enrolled LEFT OUTER JOIN MajorsIn
ON Enrolled.student_id = MajorsIn.student_id;

dept_namestudent_id
comp sci12345678

mathematics45678900

comp sci25252525

english45678900

the occult66666666

Enrolled MajorsIn

credit_statuscourse_namestudent_id
ugradCS 10512345678

ugradCS 11125252525

gradCS 46045678900

non-creditCS 10533566891

gradCS 51045678900

dept_namestudent_id
comp sci12345678

comp sci25252525

mathematics45678900

english45678900

null33566891

Left Outer Joins

SELECT …
FROM T1 LEFT OUTER JOIN T2 ON join condition
WHERE …

• The result is equivalent to:

• forming the Cartesian product
T1 x T2

• selecting the rows in T1 x T2
that satisfy the join condition
in the ON clause

• including an extra row for
each unmatched row from
T1 (the "left table")

• filling the T2 attributes in the
extra rows with nulls

• applying the other clauses
as before

dept_nameMajorsIn.
student_id

credit_
status

course_
name

Enrolled.
student_id

comp sci12345678ugradCS 10512345678

math...45678900ugradCS 10512345678

comp sci25252525ugradCS 10512345678

english45678900ugradCS 10512345678

the occult66666666ugradCS 10512345678

comp sci12345678ugradCS 11125252525

math...45678900ugradCS 11125252525

comp sci25252525ugradCS 11125252525

english45678900ugradCS 11125252525

the occult66666666ugradCS 11125252525

comp sci12345678gradCS 46045678900

math...45678900gradCS 46045678900

comp sci25252525gradCS 46045678900

english45678900gradCS 46045678900

the occult66666666gradCS 46045678900

comp sci12345678non-crCS 10533566891

math...45678900non-crCS 10533566891

comp sci25252525non-crCS 10533566891

english45678900non-crCS 10533566891

the occult66666666non-crCS 10533566891

SELECT DISTINCT Enrolled.student_id, dept_name
FROM Enrolled LEFT OUTER JOIN MajorsIn
ON Enrolled.student_id = MajorsIn.student_id;

Left Outer Joins

SELECT …
FROM T1 LEFT OUTER JOIN T2 ON join condition
WHERE …

• The result is equivalent to:

• forming the Cartesian product
T1 x T2

• selecting the rows in T1 x T2
that satisfy the join condition
in the ON clause

• including an extra row for
each unmatched row from
T1 (the "left table")

• filling the T2 attributes in the
extra rows with nulls

• applying the other clauses
as before

dept_nameMajorsIn.
student_id

credit_
status

course_
name

Enrolled.
student_id

comp sci12345678ugradCS 10512345678

comp sci25252525ugradCS 11125252525

math...45678900gradCS 46045678900

english45678900gradCS 46045678900

math...45678900gradCS 51045678900

english45678900gradCS 51045678900

SELECT DISTINCT Enrolled.student_id, dept_name
FROM Enrolled LEFT OUTER JOIN MajorsIn
ON Enrolled.student_id = MajorsIn.student_id;

Left Outer Joins

SELECT …
FROM T1 LEFT OUTER JOIN T2 ON join condition
WHERE …

• The result is equivalent to:

• forming the Cartesian product
T1 x T2

• selecting the rows in T1 x T2
that satisfy the join condition
in the ON clause

• including an extra row for
each unmatched row from
T1 (the "left table")

• filling the T2 attributes in the
extra rows with nulls

• applying the other clauses
as before

SELECT DISTINCT Enrolled.student_id, dept_name
FROM Enrolled LEFT OUTER JOIN MajorsIn
ON Enrolled.student_id = MajorsIn.student_id;

Enrolled

credit_statuscourse_namestudent_id
ugradCS 10512345678

ugradCS 11125252525

gradCS 46045678900

non-creditCS 10533566891

gradCS 51045678900

dept_nameMajorsIn.
student_id

credit_
status

course_
name

Enrolled.
student_id

comp sci12345678ugradCS 10512345678

comp sci25252525ugradCS 11125252525

math...45678900gradCS 46045678900

english45678900gradCS 46045678900

math...45678900gradCS 51045678900

english45678900gradCS 51045678900

non-crCS 10533566891

Left Outer Joins

SELECT …
FROM T1 LEFT OUTER JOIN T2 ON join condition
WHERE …

• The result is equivalent to:

• forming the Cartesian product
T1 x T2

• selecting the rows in T1 x T2
that satisfy the join condition
in the ON clause

• including an extra row for
each unmatched row from
T1 (the "left table")

• filling the T2 attributes in the
extra rows with nulls

• applying the other clauses
as before

SELECT DISTINCT Enrolled.student_id, dept_name
FROM Enrolled LEFT OUTER JOIN MajorsIn
ON Enrolled.student_id = MajorsIn.student_id;

dept_nameMajorsIn.
student_id

credit_
status

course_
name

Enrolled.
student_id

comp sci12345678ugradCS 10512345678

comp sci25252525ugradCS 11125252525

math...45678900gradCS 46045678900

english45678900gradCS 46045678900

math...45678900gradCS 51045678900

english45678900gradCS 51045678900

nullnullnon-crCS 10533566891

Left Outer Joins

SELECT …
FROM T1 LEFT OUTER JOIN T2 ON join condition
WHERE …

• The result is equivalent to:

• forming the Cartesian product
T1 x T2

• selecting the rows in T1 x T2
that satisfy the join condition
in the ON clause

• including an extra row for
each unmatched row from
T1 (the "left table")

• filling the T2 attributes in the
extra rows with nulls

• applying the other clauses
as before

SELECT DISTINCT Enrolled.student_id, dept_name
FROM Enrolled LEFT OUTER JOIN MajorsIn
ON Enrolled.student_id = MajorsIn.student_id;

dept_nameEnrolled.
student_id

comp sci12345678

comp sci25252525

mathematics45678900

english45678900

null33566891

dept_nameMajorsIn.
student_id

credit_
status

course_
name

Enrolled.
student_id

comp sci12345678ugradCS 10512345678

comp sci25252525ugradCS 11125252525

math...45678900gradCS 46045678900

english45678900gradCS 46045678900

math...45678900gradCS 51045678900

english45678900gradCS 51045678900

nullnullnon-crCS 10533566891

Outer Joins Can Have a WHERE Clause
• Example: find the IDs and majors of all students

enrolled in CS 105 (including those with no major):

SELECT Enrolled.student_id, dept_name
FROM Enrolled LEFT OUTER JOIN MajorsIn

ON Enrolled.student_id = MajorsIn.student_id
WHERE course_name = 'CS 105';

• this new condition should not be in the ON clause
because it's not being used to match up rows
from the two tables

Outer Joins Can Have Extra Tables
• Example: find the names and majors of all students

enrolled in CS 105 (including those with no major):

SELECT Student.name, dept_name
FROM Student, Enrolled LEFT OUTER JOIN MajorsIn

ON Enrolled.student_id = MajorsIn.student_id
WHERE Student.id = Enrolled.student_id

AND course_name = 'CS 105';

• the extra table requires an additional join condition,
which goes in the WHERE clause

Subqueries in FROM clauses

• A subquery can also appear in a FROM clause.

• Useful when you need to perform a computation on values
obtained by applying an aggregate.

• example: find the average enrollment in a CS course
SELECT AVG(count)
FROM (SELECT course_name, COUNT(*) AS count

FROM Enrolled
GROUP BY course_name)

WHERE course_name LIKE 'cs%';

• the subquery computes the enrollment of each course

• the outer query selects the enrollments for CS courses
and averages them

• we give the attribute produced by the subquery a name,
so we can then refer to it in the outer query.

CREATE TABLE

• What it does: creates a relation with the specified schema

• Basic syntax:

CREATE TABLE relation_name(
attribute1_name attribute1_type,
attribute2_name attribute2_type,
…
attributeN_name attributeN_type

);

• Examples:
CREATE TABLE Student(id CHAR(8), name VARCHAR(30));

CREATE TABLE Room(id CHAR(4), name VARCHAR(30),
capacity INTEGER);

Data Types

• The set of possible types depends on the DBMS.

• Standard SQL types include:

• INTEGER: a four-byte integer (-2147483648 to +2147483647)

• CHAR(n): a fixed-length string of n characters

• VARCHAR(n): a variable-length string of up to n characters

• REAL: a real number (i.e., one that may have a fractional part)

• NUMERIC(n, d): a numeric value with at most n digits,
exactly d of which are after the decimal point

• DATE: a date of the form yyyy-mm-dd

• TIME: a time of the form hh:mm:ss

• When specifying a non-numeric value, you should surround it
with single quotes (e.g., 'Jill Jones' or '2007-01-26').

CHAR vs. VARCHAR

• CHAR(n): a fixed-length string of exactly n characters

• the DBMS will pad with spaces as needed

• example: id CHAR(6)
'12345' will be stored as '12345 '

• VARCHAR(n): a variable-length string of up to n characters

• the DBMS does not pad the value

• In both cases, values will be truncated if they're too long.

• If a string attribute can have a wide range of possible lengths,
it's usually better to use VARCHAR.

Types in SQLite

• SQLite has its own types, including:

• INTEGER

• REAL

• TEXT

• It also allows you to use the typical SQL types, but it converts
them to one of its own types.

• As a result, the length restrictions indicated for CHAR
and VARCHAR are not observed.

String Comparisons

• String comparisons ignore any trailing spaces added for padding.

• ex: - an attribute named id of type CHAR(5)

- insert a tuple with the value 'abc' for id

- value is stored as 'abc ' (with 2 spaces of padding)

- the comparison id = 'abc' is true for that tuple

• In standard SQL, string comparisons using both = and LIKE
are case sensitive.

• some DBMSs provide a case-insensitive version of LIKE

• In SQLite:

• there are no real CHARs, so padding isn't added

• string comparisons using = are case sensitive

• string comparisons using LIKE are case insensitive
'abc' = 'ABC' is false

'abc' LIKE 'ABC' is true

Terms Used to Express Constraints

• primary key:
CREATE TABLE Student(id char(8) primary key,
name varchar(30));

CREATE TABLE Enrolled(student_id char(8),
course_name varchar(20), credit_status varchar(15),
primary key (student_id, course_name));

• no two tuples can have the same combination of values
for the primary-key attributes

• a primary-key attribute can never have a null value

• unique: specifies attribute(s) that form a (non-primary) key
CREATE TABLE Course(name varchar(20) primary key,

start_time time, end_time time, room_id char(4),
unique (start_time, end_time, room_id));

• a unique attribute may have a null value

• not null: specifies that an attribute can never be null
CREATE TABLE Student(id char(8) primary key,

name varchar(30) not null);

Terms Used to Express Constraints (cont.)

• foreign key … references:

CREATE TABLE MajorsIn(student_id char(8),
dept_name varchar(30),
foreign key (student_id) references Student(id),
foreign key (dept_name) references

Department(name));

nameid
Jill Jones12345678

Alan Turing25252525

......

dept_namestudent_id
comp sci12345678

mathematics45678900

......

Student Department

MajorsIn

officename
MD 235comp sci

Sci Ctr 520mathematics

......

Terms Used to Express Constraints (cont.)

• foreign key / references (cont.):

• imposes a referential integrity constraint (see last set of slides)

• a foreign-key attribute may have a null value

DROP TABLE

• What it does: removes an entire relation from a database

• including all of its existing rows

• Syntax:

DROP TABLE relation_name;

• Example:
DROP TABLE MajorsIn;

INSERT

• What it does: adds a tuple to a relation

• Syntax:
INSERT INTO relation VALUES (val1, val2, …);

• the values of the attributes must be given in the order
in which the attributes were specified when the table
was created

• Example:
INSERT INTO MajorsIn VALUES ('10005000', 'math');

[Recall the CREATE TABLE command:
CREATE TABLE MajorsIn(
student_id char(8), dept_name varchar(30),…);]

INSERT (cont.)

• Alternate syntax:
INSERT INTO relation(attr1, attr2,…)

VALUES (val1, val2, …);

• allows you to:
• specify values of the attributes in a different order
• specify values for only a subset of the attributes

• Example:
INSERT INTO MajorsIn(dept_name, student_id)

VALUES ('math', '10005000');

• If the value of a column is not specified, it is assigned a
default value.
• depends on the data type of the column

DELETE

• What it does: remove one or more
tuples from a relation
• basic syntax:

DELETE FROM table
WHERE selection condition;

• example:

DELETE FROM Student
WHERE id = '4567800';

UPDATE

• What it does: modify attributes of one or more tuples in a relation
• basic syntax:

UPDATE table
SET list of assignments
WHERE selection condition;

• examples:
UPDATE MajorsIn
SET dept_name = 'physics'
WHERE student_id = '10005000';

UPDATE Course
SET start_time = '11:00:00', end = '12:30:00'
WHERE name = 'cs165';

Writing Queries: Rules of Thumb

• Start with the FROM clause. Which table(s) do you need?

• If you need more than one table, determine the necessary
join conditions.

• for N tables, you typically need N – 1 join conditions

• is an outer join needed – i.e., do you want unmatched tuples?

• Determine if a GROUP BY clause is needed.

• are you performing computations involving subgroups?

• Determine any other conditions that are needed.

• if they rely on aggregate functions, put in a HAVING clause

• otherwise, add to the WHERE clause

• is a subquery needed?

• Fill in the rest of the query: SELECT, ORDER BY?

• is DISTINCT needed?

Which of these problems would
require a GROUP BY?

Person(id, name, dob, pob)
Movie(id, name, year, rating, runtime, genre, earnings_rank)
Actor(actor_id, movie_id) Director(director_id, movie_id)
Oscar(movie_id, person_id, type, year)

A. finding the Best-Picture winner with the best/smallest
earnings rank

B. finding the number of Oscars won by each person
that has won an Oscar

C. finding the number of Oscars won by each person,
including people who have not won any Oscars

D. both B and C, but not A

E. A, B, and C Which would require a subquery?

Which would require a LEFT OUTER JOIN?

Now Write the Queries!
Person(id, name, dob, pob)
Movie(id, name, year, rating, runtime, genre, earnings_rank)
Actor(actor_id, movie_id) Director(director_id, movie_id)
Oscar(movie_id, person_id, type, year)

1) Find the Best-Picture winner with the best/smallest earnings rank.
The result should have the form (name, earnings_rank).
Assume no two movies have the same earnings rank.

SELECT
FROM
WHERE earnings_rank = (SELECT

FROM
WHERE M.id = O.movie_id);

Now Write the Queries!
Person(id, name, dob, pob)
Movie(id, name, year, rating, runtime, genre, earnings_rank)
Actor(actor_id, movie_id) Director(director_id, movie_id)
Oscar(movie_id, person_id, type, year)

2) Find the number of Oscars won by each person that has won
an Oscar. Produce tuples of the form (name, num Oscars).

SELECT
FROM
WHERE

3) Find the number of Oscars won by each person, including people
who have not won an Oscar.

nameid

Jill Jones12345678

Alan Turing25252525

Audrey Chu33566891

Jose Delgado45678900

Count Dracula66666666

dept_namestudent_id
comp sci12345678

mathematics45678900

comp sci25252525

english45678900

the occult66666666

capacitynameid
1000Sanders Theatre1000

50Sever 1112000

100Sever 2133000

300Sci Ctr A4000

500Sci Ctr B5000

500Emerson 1056000

30Sci Ctr 1107000

officename

MD 235comp sci

Sci Ctr 520mathematics

The Dungeonthe occult

Sever 125english

room_idend_timestart_timename

400021:35:0019:35:00cscie119

200021:35:0019:35:00cscie268

700017:30:0016:00:00cs165

700019:30:0017:30:00cscie275

credit_statuscourse_namestudent_id
ugradcscie26812345678

ugradcs16525252525

gradcscie11945678900

non-creditcscie26833566891

gradcscie27545678900

Student Room

Course Department

Enrolled MajorsIn

Practice Writing Queries
Student(id, name) Department(name, office) Room(id, name, capacity)
Course(name, start_time, end_time, room_id) MajorsIn(student_id, dept_name)
Enrolled(student_id, course_name, credit_status)

1) Find all rooms that can seat at least 100 people.

2) Find the course or courses with the earliest start time.

Practice Writing Queries (cont.)

Student(id, name) Department(name, office) Room(id, name, capacity)
Course(name, start_time, end_time, room_id) MajorsIn(student_id, dept_name)
Enrolled(student_id, course_name, credit_status)

3) Find the number of majors in each department.

4) Find all courses taken by CS ('comp sci') majors.

Practice Writing Queries (cont.)

Student(id, name) Department(name, office) Room(id, name, capacity)
Course(name, start_time, end_time, room_id) MajorsIn(student_id, dept_name)
Enrolled(student_id, course_name, credit_status)

5) Create a list of all Students who are not enrolled in a course.

Why won't this work?

SELECT name
FROM Student, Enrolled
WHERE Student.id != Enrolled.student_id;

Practice Writing Queries (cont.)

Student(id, name) Department(name, office) Room(id, name, capacity)
Course(name, start_time, end_time, room_id) MajorsIn(student_id, dept_name)
Enrolled(student_id, course_name, credit_status)

6) Find the number of CS majors enrolled in cscie268.

6b) Find the number of CS majors enrolled in any course.

Practice Writing Queries (cont.)

Student(id, name) Department(name, office) Room(id, name, capacity)
Course(name, start_time, end_time, room_id) MajorsIn(student_id, dept_name)
Enrolled(student_id, course_name, credit_status)

7) Find the number of majors that each student has declared.

Practice Writing Queries (cont.)

Student(id, name) Department(name, office) Room(id, name, capacity)
Course(name, start_time, end_time, room_id) MajorsIn(student_id, dept_name)
Enrolled(student_id, course_name, credit_status)

8) For each department with more than one majoring student,
output the department's name and the number of majoring
students.

Storage and Indexing

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

Accessing the Disk

• Data is arranged on disk in units called blocks.

• typically fairly large (e.g., 4K or 8K)

• Relatively speaking, disk I/O is very expensive.

• in the time it takes to read a single disk block,
the processor could be executing millions of instructions!

• The DBMS tries to minimize the number of disk accesses.

Review: DBMS Architecture

• A DBMS can be viewed as a composition of two layers.

• At the bottom is the storage layer or
storage engine, which takes care of
storing and retrieving the data.

• Above that is the logical layer, which
provides an abstract representation
of the data.

logical layer

storage engine

OS FS

disks

Logical-to-Physical Mapping

• The logical layer implements a mapping
between:

the logical schema of a database

its physical representation

• In the relational model, the schema includes:

• attributes/columns, including their types

• tuples/rows

• relations/tables

• To be model-neutral, we'll use these terms instead:

• field for an individual data value

• record for a group of fields

• collection for a group of records

logical layer

storage engine

OS FS

disks

Logical-to-Physical Mapping (cont.)

• A DBMS may use the filesystem, or it may
bypass it and use its own disk manager.

• In either case, a DBMS may use units
called pages that have a different size
than the block size.
• can be helpful in performance tuning

logical layer

storage engine

OS FS

disks

Logical-to-Physical Mapping (cont.)

• We'll consider:

• how to map logical records to their physical representation

• how to organize the records in a given collection

• including the use of index structures

• Different approaches require different amounts of metadata –
data about the data.

• example: the types and lengths of the fields

• per-record metadata – stored within each record

• per-collection metadata – stored once for the entire collection

• Assumptions about data in the rest of this set of slides:

• each character is stored using 1 byte

• integer data values are stored using 4 bytes

• integer metadata (e.g., offsets) are stored using 2 bytes

Fixed- or Variable-Length Records?

• This choice depends on:

• the types of fields that the records contain

• the number of fields per record, and whether it can vary

• Simple case: use fixed-length records when

• all fields are fixed-length (e.g., CHAR or INTEGER),

• there is a fixed number of fields per record

Fixed- or Variable-Length Records? (cont.)

• The choice is less straightforward when you have either:

• variable-length fields (e.g., VARCHAR)

• a variable number of fields per record (e.g., in XML)

Two options:

1. fixed-length records: always allocate
the maximum possible length

• plusses and minuses:

+ less metadata is needed, because:
• every record has the same length
• a given field is in a consistent position within all records

+ changing a field's value doesn't change the record's length
• thus, changes never necessitate moving the record

– we waste space when a record has fields shorter than
their max length, or is missing fields

…comp sci…

…math…

Fixed- or Variable-Length Records? (cont.)

2. variable-length records: only allocate the
space that each record actually needs

• plusses and minuses:

– more metadata is needed in order to:
• determine the boundaries between records
• determine the locations of the fields in a given record

– changing a field's value can change the record's length
• thus, we may need to move the record

+ we don't waste space when a record has fields shorter
than their max length, or is missing fields

…comp sci…

…math…

Format of Fixed-Length Records

• With fixed-length records, we store the fields one after the other.

• If a fixed-length record contains a variable-length field:

• allocate the max. length of the field

• use a delimiter (# below) if the value is shorter than the max.

• Example:
Dept(id CHAR(7), name VARCHAR(20), num_majors INT)

• why doesn't 'history & literature' need a delimiter?

200comp sci# 1234567

125math#9876543

175history & literature4567890

id name num_majors

Format of Fixed-Length Records (cont.)

• To find the position of a field, use per-collection metadata.
• typically store the offset of each field (O1 and O2 below) –

how many bytes the field is from the start of the record

• Notes:

• the delimiters are the only per-record metadata

• the records are indeed fixed-length – 31 bytes each!

• 7 bytes for id, which is a CHAR(7)

• 20 bytes for name, which is a VARCHAR(20)

• 4 bytes for num_majors, which is an INT

O1
O2

200comp sci# 1234567

125math#9876543

175history & literature4567890

id name num_majors

Format of Variable-Length Records

• With variable-length records, we need per-record metadata
to determine the locations of the fields.

• For simplicity, we’ll assume all records in a given collection
have the same # of fields.

• We'll look at how the following record would be stored:

('1234567', 'comp sci', 200)

• We'll consider two types of operations:

1. finding/extracting the value of a single field
SELECT num_majors
FROM Dept
WHERE name = 'comp sci';

2. updating the value of a single field

• its length may become smaller or larger

CHAR(7) VARCHAR(20) INT

Format of Variable-Length Records (cont.)

• Option 1: Terminate field values with a special delimiter character.

1. finding/extracting the value of a single field
this is very inefficient; need to scan byte-by-byte to:
• find the start of the field we’re looking for
• determine the length of its value (if it is variable-length)

2. updating the value of a single field
if it changes in size, we need to shift the values after it,
but we don't need to change their metadata

#200#comp sci#1234567

CHAR(7) VARCHAR(20) INT

Format of Variable-Length Records (cont.)

• Option 2: Precede each field by its length.

1. finding/extracting the value of a single field
this is more efficient
• can jump over fields, rather than scanning byte-by-byte

(but may need to perform multiple jumps)
• never need to scan to determine the length of a value

2. updating the value of a single field
same as option 1

CHAR(7) VARCHAR(20) INT

2004comp sci812345677

Format of Variable-Length Records (cont.)

• Option 3: Put offsets and other metadata in a record header.

computing the offsets

• 3 fields in record 4 offsets, each of which is a 2-byte int

• thus, the offsets take up 4*2 = 8 bytes

• offset0 = 8, because field0 comes right after the header

• offset1 = 8 + len('1234567') = 8 + 7 = 15

• offset2 = 15 + len('comp sci') = 15 + 8 = 23

• offset3 = offset of the end of the record
= 23 + 4 (since 200 an int) = 27

We store this offset because it may be needed
to compute the length of a field's value!

record header

of bytes from the start of the record

200comp sci12345672723158

0 2 4 6 8 15 23

Format of Variable-Length Records (cont.)

• Option 3 (cont.)

1. finding/extracting the value of a single field
this representation is the most efficient. it allows us to:
• jump directly to the field we're interested in
• compute its length without scanning through its value

2. updating the value of a single field
less efficient than options 1 and 2 if the length changes. why?

200comp sci12345672723158

0 2 4 6 8 15 23

Representing Null Values

• Option 1: add an "out-of-band" value for every data type

• con: need to increase the size of most data types,
or reduce the range of possible values

• Option 2: use per-record metadata

• example: use a special offset (e.g., -1)

comp sci123456723-1158

0 2 4 6 8 15

Index Structures

• An index structure stores (key, value) pairs.

• also known as a dictionary or map

• we will sometimes refer to the (key, value) pairs as items

• The index allows us to more efficiently access a given record.

• quickly find it based on a particular field

• instead of scanning through the entire collection to find it

• A given collection of records may have multiple index structures:

• one clustered or primary index

• some number of unclustered or secondary indices

Clustered/Primary Index

• The clustered index is the one that stores the full records.

• also known as a primary index, because it is typically based
on the primary key

• If the records are stored outside of an index structure,
the resulting file is sometimes called a heap file.

• managed somewhat like the heap memory region

Unclustered/Secondary Indices

• In addition to the clustered/primary index, there can be
one or more unclustered indices based on other fields.

• also known as secondary indices

• Example: Customer(id, name, street, city, state, zip)

• primary index:
(key, value) = (id, all of the remaining fields in the record)

• a secondary index to enable quick searches by name
(key, value) = (name, id) does not include the other fields!

• We need two lookups when we start with the secondary index.

• example: looking for Ted Codd's zip code

• search for 'Ted Codd' in the secondary index
 '123456' (his id)

• search for '123456' in the primary index
 his full record, including his zip code

B-Trees

• A B-tree of order m is a tree in which each node has:
• at most 2m items (and, for internal nodes, 2m + 1 children)
• at least m items (and, for internal nodes, m + 1 children)
• exception: the root node may have as few as 1 item

• Example: a B-tree of order 2

(we’re just showing the keys)

• A B-tree has perfect balance: all paths from the root node
to a leaf node have the same length.

20 40 68 90

28 34 51 61 65

… ……

Search in B-Trees

• A B-tree is a search tree.

• like a binary search tree, but can have more keys per node

• When searching for an item whose key is k, we never need to
enter more than one of the subtrees of a node.

<k0

 k0
< k1

k0 k1 … kn-1

kn-1

kn-2
<kn-1

…

each triangle is a subtree

20 40 68 90

3 10 14 28 34 93 9751 61 77 80 87

Search in B-Trees (cont.)

• Example: search for the item whose key is 87

• Here's pseudocode for the algorithm:
search(key, node) {

if (node == null) return null;
i = 0;
while (i < node.numkeys && node.key[i] < key)

i++;
if (i == node.numkeys || node.key[i] != key)

return search(key, node.child[i]);
else // node.key[i] == key

return node.data[i];
}

Insertion in B-Trees

• Algorithm for inserting an item with a key k:

search for k until you reach a leaf node

if the leaf node has fewer than 2m items, add the new item
to the leaf node

else split the node, dividing up the 2m + 1 items:

the first/smallest m items remain in the original node

the last/largest m items go in a new node

send the middle item up and insert it (and a pointer to
the new node) in the parent

• Example of an insertion without a split: insert 13

20 40 68 90

3 10 14 28 34 51 61

… …
20 40 68 90

3 10 13 14 28 34 51 61

… …

m = 2

Splits in B-Trees

• Insert 5 into the result of the previous insertion:

• The middle item (the 10) is sent up to the root.
The root has no room, so it is also split, and a new root is formed:

• Splitting the root increases the tree’s height by 1, but
it remains balanced! This is only way the height increases.

• When an internal node is split, its 2m + 2 pointers are split evenly
between the original node and the new node.

20 40 68 90

28 34 51 61

… …
20 40 68 90

3 5 13 14 28 34 51 61

… …
3 10 13 145

10
m = 2

40

20 40 68 90

3 5 13 14 28 34 51 61

… …
10 20 68 90

28 34 51 61

… …
10

3 5 13 14

Other Details of B-Trees 40

28 34

10 20

3 5 13 14

…

…
• Each node in the tree corresponds to one page

in the corresponding index file.

• child pointers = page numbers

• Efficiency: In the worst case, searching for an item involves
traversing a single path from the root to a leaf node.

• # of nodes accessed <= tree height + 1

• each internal node has at least m children

 tree height <= logmn, where n = # of items

 search and insertion are O(logmn)

• To minimize disk I/O, make m as large as possible.

• but not too large!

• if m is too large, can end up with items that don't fit on the page
and are thus stored in separate overflow pages

B+Trees

61

3 10 14

77 90

90 93 97

20 40

20 28 34 40 51 61 68 77 80 87

• A B+tree is a B-tree variant in which:
• data items are only found in the leaf nodes
• internal nodes contain only keys and child pointers
• an item’s key may appear in a leaf node and an internal node

• Example: a B+tree of order 2

B+Trees (cont.)

• Advantages:
• there’s more room in the internal nodes for child pointers

• why is this beneficial?

• because all items are in leaf nodes, we can link the leaves
together to improve the efficiency of operations that involve
scanning the items in key order (e.g., range searches)

61

3 10 14

77 90

90 93 97

20 40

20 28 34 40 51 61 68 77 80 87

Differences in the Algorithms for B+Trees

• When searching, we keep going until we reach a leaf node,
even if we see the key in an internal node.

• When splitting a leaf node with 2m + 1 items:

• the first m items remain in the original node as before

• all of the remaining m + 1 items are put in the new node,
including the middle item

• the key of the middle item is copied into the parent

• why can't we move up the entire item as before?

• Example: insert 18

20 40 68

28 34 51 61

…
3 10 13 14

m = 2
13 20 40 68

28 34 51 61

…
18 13 14 183 10

Differences in the Algorithms for B+Trees (cont.)

• Splitting an internal node is the same as before,
but with keys only:

• first m keys stay in original node,
last m keys go to new node

• middle key is sent up to parent (not copied)

Deletion in B-Trees and B+Trees

• Search for the item and remove it.

• If a node N ends up with fewer than m items,
do one of the following:

• if a sibling node has more than m items,
take items from it and add them to N

• if the sibling node only has m items,
merge N with the sibling

• If the key of the removed item is in an internal node,
don’t remove it from the internal node.

• we need the key to navigate to the node’s children

• can remove when the associated child node
is merged with a sibling

• Some systems don’t worry about nodes with too few items.
• assume items will be added again eventually

Ideal Case: Searching = Indexing

• The ideal index structure would be one in which:

key of data item = the page number where the item is stored

• In most real-world problems, we can't do this.

• the key values may not be integers

• we can’t afford to give each key value its own page

• To get something close to the ideal, we perform hashing:

• use a hash function to convert the keys to page numbers

h('hello') 5

• The resulting index structure is known as a hash table.

Hash Tables: In-Memory vs. On-Disk

• In-memory:

• the hash value is used as an index into an array

• depending on the approach you're taking,
a given array element may only hold one item

• need to deal with collisions = two values hashed to same index

• On-disk:

• the hash value tells you which page the item should be on

• because pages are large, each page serves as a bucket
that stores multiple items

• need to deal with full buckets

Static vs. Dynamic Hashing

• In static hashing, the number of buckets never changes.

• if a bucket becomes full, we use overflow buckets/pages

• why is this problematic?

• In dynamic hashing, the number of buckets can grow over time.

• can be expensive if you're not careful!

0

1

2

...…

primary
buckets overflow buckets

A Simplistic Approach to Dynamic Hashing

• Assume that:

• we're using keys that are strings

• h(key) = number of characters in key

• we use mod (%) to ensure we get a valid bucket number:

bucket index = h(key) % number of buckets

• When the hash table gets to be too full:

• double the number of buckets

• rehash all existing items. why?

"if", "case", "continue"0

"class", "for", "extends"1

"if", "case", "continue"0

"class" 1

"if"2

"for", "extends"3

Linear Hashing

• It does not use the modulus to determine the bucket index.

• Rather, it treats the hash value as a binary number,
and it uses the i rightmost bits of that number:

i = ceil(log2n) where n is the current number of buckets

• example: n = 3 i = ceil(log23) = 2

• If there's a bucket with the index given by the i rightmost bits,
put the key there.

h("if") = 2 = 00000010

h("case") = 4 = 00000100

h("class") = ?

h("continue") = ?

• If not, use the bucket specified by the rightmost i – 1 bits
h("for") = 3 = 00000011

h("extends") = ?

"case"00 = 0

01 = 1

"if"10 = 2

(11 = 3 is too big, so use 1)

Linear Hashing: Adding a Bucket

• In linear hashing, we keep track of three values:
• n, the number of buckets
• i, the number of bits used to assign keys to buckets
• f, some measure of how full the buckets are

• When f exceeds some threshold, we:
• add only one new bucket
• increment n and update i as needed
• rehash/move keys as needed

• We only need to rehash the keys in one of the old buckets!

• if the new bucket's binary index is 1xyz (xyz = arbitrary bits),
rehash the bucket with binary index 0xyz

• Linear hashing has to grow the table more often,
but each new addition takes very little work.

Example of Adding a Bucket

• Assume that:

• our measure of fullness, f = # of items in hash table

• we add a bucket when f > 2*n

• Continuing with our previous example:

• n = 3; f = 6 = 2*3, so we're at the threshold

• adding "switch" exceeds the threshold, so we:

• add a new bucket whose index = 3 = 11 in binary

• increment n to 4 i = ceil(log24) = 2 (unchanged)

"case", "continue"00 = 0

"class", "for", "extends"01 = 1

"if", "switch"10 = 2

"case", "continue"00 = 0

"class", "for", "extends"01 = 1

"if", "switch"10 = 2

11 = 3

n = 3, i = 2 n = 4, i = 2

Example of Adding a Bucket (cont.)

• Which previous bucket do we need to rehash?

• new bucket has a binary index of 11

• because this bucket wasn't there before,
items that should now be in 11 were originally put in 01
(using the rightmost i – 1 bits)

"case", "continue"00 = 0

"class", "for", "extends"01 = 1

"if", "switch"10 = 2

11 = 3

n = 4, i = 2

Example of Adding a Bucket (cont.)

• Which previous bucket do we need to rehash?

• new bucket has a binary index of 11

• because this bucket wasn't there before,
items that should now be in 11 were originally put in 01
(using the rightmost i – 1 bits)

• thus, we rehash bucket 01:
• h("class") = 5 = 00000101 (leave where it is)

• h("for") = 3 = 00000011 (move to new bucket)

• h("extends") = 7 = 00000111

"case", "continue"00 = 0

"class"01 = 1

"if", "switch"10 = 2

"for"11 = 3

n = 4, i = 2

"case", "continue"00 = 0

"class", "for", "extends"01 = 1

"if", "switch"10 = 2

11 = 3

n = 4, i = 2

Additional Details

• If the number of buckets exceeds 2i, we increment i and begin
using one additional bit.

"case", "continue"00 = 0

"class", "while"01 = 1

"if", "switch", "String"10 = 2

"for", "extends"11 = 3

"case", "continue"000 = 0

"class", "while"001 = 1

"if", "switch", "String"010 = 2

"for", "extends"011 = 3

100 = 4

n = 4, i = 2, f = 9, 9 > 2*4 n = 5, i = 3

which bucket should be rehashed?

Additional Details

• If the number of buckets exceeds 2i, we increment i and begin
using one additional bit.

• The process of adding a bucket is sometimes referred to
as splitting a bucket.
• example: adding bucket 4 <==> splitting bucket 0

because some of 0’s items may get moved to bucket 4

• The split bucket:
• may retain all, some, or none of its items
• may not be as full as other buckets

• thus, linear hashing still allows for overflow buckets as needed

"case", "continue"00 = 0

"class", "while"01 = 1

"if", "switch", "String"10 = 2

"for", "extends"11 = 3

"continue"000 = 0

"class", "while"001 = 1

"if", "switch", "String"010 = 2

"for", "extends"011 = 3

"case"100 = 4

n = 4, i = 2, f = 9, 9 > 2*4 n = 5, i = 3

More Examples

• Assume again that we add a bucket whenever the # of items
exceeds 2n.

• What will the table below look like after inserting the following
sequence of keys? (assume no overflow buckets are needed)
"toString": h("toString") = ?

"continue"000 = 0

"class", "while"001 = 1

"if", "switch", "String"010 = 2

"for", "extends"011 = 3

"case"100 = 4

n = 5, i = 3

Hash Table Efficiency

• In the best case, search and insertion require
at most one disk access.

• In the worst case, search and insertion require k accesses,
where k is the length of the largest bucket chain.

• Dynamic hashing can keep the worst case from being too bad.

Hash Table Limitations

• It can be hard to come up with a good hash function for a
particular data set.

• The items are not ordered by key. As a result, we can’t easily:

• access the records in sorted order

• perform a range search

• perform a rank search – get the kth largest value of
some field

We can do all of these things with a B-tree / B+tree.

Which Index Structure Should You Choose?

• Recently accessed pages are stored in a cache in memory.

• Working set = collection of frequently accessed pages

• If the working set fits in the cache, use a B-tree / B+tree.

• efficiently supports a wider range of queries (see last slide)

• If the working set can't fit in memory:

• choose a B-tree/B+tree if the workload exhibits locality
• locality = a query for a key is often followed by

a query for a key that is nearby in the space of keys

• because the items are sorted by key,
the neighbor will be in the cache

• choose a hash table if the working set is very large
• uses less space for "bookkeeping" (pointers, etc.),

and can thus fit more of the working set in the cache

• fewer operations are needed before going to disk

Implementing a
Logical-to-Physical Mapping

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

Recall: Logical-to-Physical Mapping

• Recall our earlier diagram of a DBMS,
which divides it into two layers:

• the logical layer

• the storage layer or storage engine

• The logical layer implements a mapping from the logical schema
of a collection of data to its physical representation.

• example: for the relational model, it maps:

attributes fields
tuples to records
relations files and index structures
selects, projects, etc. scans, searches, field extractions

logical layer

storage engine

OS FS

disks

Your Task

• On the homework, you will implement portions of
the logical-to-physical mapping for a simple relational DBMS.

• We’re giving you:

• a SQL parser

• a storage engine: Berkeley DB

• portions of the code needed for the mapping, and a
framework for the code that you will write

• In a sense, we’ve divided the
logical layer into two layers:

• a SQL parser
• everything else – the "middle layer"

• you’ll implement parts of this

storage engine

OS FS

disks

"middle layer"

SQL parser

The Parser

• Takes a string containing a SQL statement

• Creates an instance of a subclass of the class SQLStatement:

• SQLStatement is an abstract class.

• contains fields and methods inherited by the subclasses

• includes an abstract execute() method

• just the method header, not the body

• Each subclass implements its own version of execute()

• you'll do this for some of the subclasses

SQLStatement

CreateStatement InsertStatementDropStatement ...

SQLStatement Class

• Looks something like this:

public abstract class SQLStatement {
private ArrayList<Table> tables;
private ArrayList<Column> columns;
private ArrayList<Object> columnVals;
private ConditionalExpression where;
private ArrayList<Column> whereColumns;

public abstract void execute();
…

Other Aspects of the Code Framework

• DBMS: the "main" class

• methods to initialize, shutdown, or abort the system

• methods to maintain and access the state of the system

• to allow access to the DBMS methods from other classes,
we make its methods static

• this means the class name can be used to invoke them

• Classes that represent relational constructs, including:
• Table

• Column

• InsertRow: a row that is being prepared for insertion in a table

• Catalog: a class that maintains the per-table metadata

• here again, the methods are static

The Storage Engine: Berkeley DB (BDB)

• An embedded database library for managing key/value pairs

• fast: runs in the application’s address space, no IPC

• reliable: transactions, recovery, etc.

• One example of a type of noSQL database known as a
key-value store.

• We're using Berkeley DB Java Edition (JE)

• Note: We're not using the Berkeley DB SQL interface.

• we're writing our own!

Berkeley DB Terminology

• A database in BDB is a collection of key/value pairs that are
stored in the same index structure.

• BDB docs say "key/data pairs" instead of "key/value pairs"

• BDB Java Edition always uses a B+tree.

• other versions of BDB provide other index-structure options

• A database is operated on by making method calls using a
database handle – an instance of the Database class.

• We will use one BDB database for each table/relation.

Berkeley DB Terminology (cont.)

• An environment in BDB encapsulates:

• a set of one or more related BDB databases

• the state associated with the BDB subsystems
for those databases

• RDBMS: related tables are grouped together into a database.
BDB: related databases are grouped together into an environment.

• Files for a given environment are put in the same folder.

• known as the environment’s home directory

Opening/Creating a BDB Database

• We give you the code for this in the DBMS framework:

• CreateStatement.execute() creates a database
for a new table

• Table.open() opens the database for an existing table

• Use the table's primary key for the keys in the key/value pairs.

• if one wasn't specified when the table was created,
we use the first column

• can assume no multi-attribute primary keys

Key/Value Pairs

• When manipulating keys and values within a program,
we represent them using a DatabaseEntry object.

• For a given key/value pair, we need two DatabaseEntrys.

• one for the key

• one for the value

• Each DatabaseEntry encapsulates:

• a reference to the collection of bytes (the data)

• the size of the data (i.e., its length in bytes)

• some additional fields

• methods: getData, getSize, …

• consult the Berkeley DB API for info on the methods!

Byte Arrays

• In Berkeley DB, the on-disk keys and values are byte arrays –
i.e., arbitrary collections of bytes.

• Berkeley DB does not attempt to interpret them.

• Your code will need to impose structure on these byte arrays.

Marshalling the Data

• When inserting a row, we need to turn a collection of fields
into a key/value pair.

• example:

('9876543', 'psych', 125)

• In BDB, the key and value are each:

• represented by a DatabaseEntry object

• based on a byte array that we need to create

• This process is referred to as marshalling the data.

• The reverse process is known as unmarshalling.

9876543

key

value

125pysch17138-2

The Required Record Format

• Here's what option 3 did:

('1234567', 'comp sci', 200)

• We'll do something a bit different:

('1234567', 'comp sci', 200)

• the primary-key value becomes the key in the key/value pair

• the value is the other fields with a header of offsets

• we use a special offset for the primary-key in the header
(note: it won't always be the first column!)

• what should the remaining offsets be in this case?
(assume 2-byte offsets and 4-byte integer values)

200comp sci???-2

1234567

key

value

200comp sci12345672723158

Classes for Manipulating Byte Arrays

• RowOutput: an output stream that writes into a byte array

• inherits from Java’s DataOutputStream:
• writeBytes(String val)

• writeShort(int val) // can use for offsets!

• writeInt(int val)

• writeDouble(double val)

• methods for obtaining the results of the writes:
• getBufferBytes()

• getBufferLength()

• includes a toString() method that shows the
current contents of the byte array

Classes for Manipulating Byte Arrays (cont.)

• RowInput: an input stream that reads from a byte array

• methods that take an offset from the start of the byte array
• readBytesAtOffset(int offset, int length)

• readIntAtOffset(int offset)

• etc.

• methods that read from the current offset
(i.e., from where the last read left off)

• readNextBytes(int length)

• readNextInt()

• etc.

• includes a toString() method that shows the
contents of the byte array and the current offset

Example of Marshalling

('1234567', 'comp sci', 200)

• Marshalling this row could be done as follows:

RowOutput keyBuffer = new RowOutput();
keyBuffer.writeBytes("1234567");

RowOutput valuebuffer = new RowOutput();
valueBuffer.writeShort(-2);
valueBuffer.writeShort(8);
valueBuffer.writeShort(16);
valueBuffer.writeShort(20);
valueBuffer.writeBytes("comp sci");
valueBuffer.writeInt(200);

200comp sci20168-2

1234567

key

value

Inserting Data into a BDB Database

• Create the DatabaseEntry objects for the key and value:
// see previous slide for marshalling code
byte[] bytes = keyBuffer.getBufferBytes();
int numBytes = keyBuffer.getBufferLength();
DatabaseEntry key = new DatabaseEntry(bytes, 0, numBytes);

bytes = valueBuffer.getBufferBytes();
numBytes = valueBuffer.getBufferLength();
DatabaseEntry value = new DatabaseEntry(bytes, 0, numBytes);

• Use the Database putNoOverwrite method:
Database db; // assume it has been opened
OperationStatus ret = db.putNoOverwrite(null, key, value);

• null because we are not using transactions

• if there is an existing key/value pair with the specified key:

• the insertion fails

• the method returns OperationStatus.KEYEXIST

• if the insertion succeeds, returns OperationStatus.SUCCESS

Cursors in Berkeley DB

• In general, a cursor is a construct used to iterate over records
in a database file.

• similar to an iterator for a collection class

• In BDB, cursors iterate over key/value pairs in a BDB database.

• based on method calls using an instance of the Cursor class

• The key/value pairs are returned in "empty" DatabaseEntrys
that are passed as parameters to the cursor's getNext method:

DatabaseEntry key = new DatabaseEntry();
DatabaseEntry value = new DatabaseEntry();
OperationStatus ret = curs.getNext(key, value, null);

Table Iterators

• In PS 2, a cursor is used to implement a TableIterator class.

• It can be used to iterate over the tuples in either:

• an entire single table:

SELECT *
FROM Movie;

• or the relation that is produced by applying a
selection operator to the tuples of single table:

SELECT *
FROM Movie
WHERE rating = 'PG-13' and year > 2010;

• A TableIterator has:

• fields for the current key/value pair accessed by the cursor

• methods for advancing/resetting the cursor

• a method you'll implement for getting a column's value

Unmarshalling a Single Field's Value

• You will write a TableIterator method that unmarshalls the
value of a single column from the current key/value pair.

public Object getColumnVal(int colIndex)

• First, you'll need to create the necessary RowInput objects:

RowInput keyIn = new RowInput(this.key.getData());
RowInput valueIn = new RowInput(this.value.getData());

• Then you'll use RowInput methods to access the necessary
offset(s) and value.

• You should not unmarshall the entire record – only the portions
that are needed to get the value of the specified column.

• Thus, you should mostly use the "at offset" versions of the
RowInput methods.

• readBytesAtOffset, readIntAtOffset, etc.

Examples of Unmarshalling: Assumptions

• We have a simplified version of the Movie table from PS 1:

Movie(id CHAR(7), name VARCHAR(64), runtime INT,
rating VARCHAR(5), earnings_rank INT)

• We didn't specify a primary key when we created the table.

• thus, id is the primary key – and the key in the key/value pair

• the rest of the row is in the value portion of the key/value pair

• We're using 2-byte offsets.

• -2 indicates the primary key

• -1 indicates a NULL value

• The cursor/iterator is currently positioned on this key/value pair:

45-144403124 R111Moonlight26-1252112-2

0 2 4 6 8 1210 21 25

4975722key value

Example 1

Movie(id CHAR(7), name VARCHAR(64), runtime INT,
rating VARCHAR(5), earnings_rank INT)

• To retrieve the movie's name (field1 – the second field):

• determine that offset1 is 1*2 = 2 bytes from the start

• perform a read at an offset of 2 to obtain offset1 12

• because name is a VARCHAR, read offset2 21
and compute this name's length = 21 – 12 = 9

• read 9 bytes at an offset of 12 bytes 'Moonlight'

45-144403124 R111Moonlight26-1252112-2

0 2 4 1210 21 25

value

6 8

Example 2

Movie(id CHAR(7), name VARCHAR(64), runtime INT,
rating VARCHAR(5), earnings_rank INT)

• To retrieve the earnings_rank (field4)

• determine that offset4 is 4*2 = 8 bytes from the start

• perform a read at an offset of 8 to obtain offset4 -1

• conclude that the value is NULL

45-144403124 R111Moonlight26-1252112-2

0 2 4 1210 21 25

value

6 8

Example 3

Movie(id CHAR(7), name VARCHAR(64), runtime INT,
rating VARCHAR(5), earnings_rank INT)

• To retrieve the rating (field3):

• determine that offset3 is 3*2 = 6 bytes from the start

• perform a read at an offset of 6 to obtain offset3 25

• because rating is a VARCHAR:

• read offset4 -1, so we need to keep going!

• read offset5 26

• compute this rating's length = 26 – 25 = 1

• read 1 byte at an offset of 25 'R'

45-144403124 R111Moonlight26-1252112-2

0 2 4 1210 21 25

value

6 8

Transactions and Schedules

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

Transactions: An Overview

• A transaction is a sequence of operations that is treated as
a single logical operation. (abbreviation = txn)

• Example: a balance transfer

• Transactions are all-or-nothing: all of a transaction’s changes
take effect or none of them do.

read balance1
write(balance1 - 500)
read balance2
write(balance2 + 500)

transaction T1

Executing a Transaction

1. Issue a command indicating the start of the transaction.

2. Perform the operations in the transaction.
• in SQL: SELECT, UPDATE, etc.

3. End the transaction in one of two ways:

• commit it: make all of its results visible and persistent

• all of the changes happen

• roll it back / abort it: undo all of its changes,
returning to the state before the transaction began

• none of the changes happen

Why Do We Need Transactions?

• To prevent problems stemming from system failures.

• example: a balance transfer

read balance1
write(balance1 - 500)
CRASH
read balance2
write(balance2 + 500)

Why Do We Need Transactions? (cont.)

• To ensure that operations performed by different users don’t
overlap in problematic ways.

• example: this should not be allowed

read balance1
write(balance1 – 500)

read balance2
write(balance2 + 500)

user 1

read balance1
read balance2
if (balance1 + balance2 < min)

write(balance1 – fee)

user 2

ACID Properties

• A transaction has the following “ACID” properties:
Atomicity: either all of its changes take effect or none do

Consistency preservation: its operations take the database
from one consistent state to another

• consistent = satisfies the constraints from the schema,
and any other expectations about the values in the database

Isolation: it is not affected by and does not affect other
concurrent transactions

Durability: once it commits, its changes survive failures

• The user plays a role in consistency preservation.

• ex: add to balance2 the same amnt subtracted from balance1

• the DBMS helps by rejecting changes that violate constraints

• guaranteeing the other properties also preserves consistency

Atomicity and Durability

• These properties are guaranteed by the part of the system
that performs logging and recovery.

• After a crash, the recovery subsystem:

• redoes as needed all changes by committed txns

• undoes as needed all changes by uncommitted txns

• restoring the old values of the changed data items

• We’ll look more at logging and recovery later in the semester.

Isolation

• To guarantee isolation, the DBMS has to prevent problematic
interleavings like the one we saw earlier:

• One possibility: enforce a serial schedule (no interleaving).

• doesn’t make sense for performance reasons. why?

read balance2
read balance1
if (balance1 + balance2 < min)

write(balance1 – fee)

read balance2
read balance1
if (balance1 + balance2 < min)

write(balance1 – fee)or

read balance1
write(balance1 – 500)

read balance2
write(balance2 + 500)

read balance1
read balance2
if (balance1 + balance2 < min)

write(balance1 – fee)

1
2

1
2

transaction T1

transaction T2

read balance1
write(balance1 – 500)
read balance2
write(balance2 + 500)

read balance1
write(balance1 – 500)
read balance2
write(balance2 + 500)

Serializability

• A serializable schedule is one whose effects are equivalent
to the effects of some serial schedule. For example:

• X is increased by 15

• Y is increased by 8

• Because the effects schedule 1 are equivalent to the effects
of a serial schedule (schedule 2), schedule 1 is serializable.

transaction T1

transaction T2

schedule 1

transaction T1

transaction T2

schedule 2 (a serial schedule)

• X is increased by 15

• Y is increased by 8

read X
X = X + 5
write X
read Y
Y = Y + 6
write Y

read Y
Y = Y + 2
write Y
read X
X = X + 10
write X

read X
X = X + 5
write X

read Y
Y = Y + 6
write Y

read Y
Y = Y + 2
write Y

read X
X = X + 10
write X

Not All Schedules Are Serializable!

• Schedule 1 is a special case.

• both T1 and T2 use addition to change the values of X and Y

• addition is commutative

• thus, the order in which T1 and T2 make their changes
doesn't matter!

transaction T1

transaction T2

schedule 1

transaction T1

transaction T2

schedule 2 (a serial schedule)

read X
X = X + 5
write X
read Y
Y = Y + 6
write Y

read Y
Y = Y + 2
write Y
read X
X = X + 10
write X

read X
X = X + 5
write X

read Y
Y = Y + 6
write Y

read Y
Y = Y + 2
write Y

read X
X = X + 10
write X

Not All Schedules Are Serializable! (cont.)

• If we change T2 so that it uses multiplication,
the original interleaving is no longer serializable.

• X 10(X + 5)

• Y 2Y + 6

• Because the effects schedule 1B are not equivalent to the effects
of any serial schedule of T1+T2B, schedule 1B is not serializable.

transaction T1

schedule 1B

transaction T1

schedule 2B

read X
X = X + 5
write X
read Y
Y = Y + 6
write Y

read Y
Y = Y * 2
write Y
read X
X = X * 10
write X

read X
X = X + 5
write X

read Y
Y = Y + 6
write Y

read Y
Y = Y * 2
write Y

read X
X = X * 10
write X

transaction T1

schedule 3

read X
X = X + 5
write X
read Y
Y = Y + 6
write Y

read Y
Y = Y * 2
write Y
read X
X = X * 10
write X

transaction T2B

transaction T2B

transaction T2B

• X 10(X + 5)

• Y 2(Y + 6)

• X 10X + 5

• Y 2Y + 6

Conventions for Schedules

• We abstract all transactions into sequences of reads and writes.

• example:

• we use a different variable for each data item
that is read or written

• we ignore:

• the actual meaning and values of the data items

• the nature of the changes that are made to them

• things like comparisons that a transaction does
in its own address space

read balance1
read balance2
if (balance1 + balance2 < min)

write(balance1 – fee)

T2

read(A)
read(B)
write(A)

T2

Conventions for Schedules (cont.)

• We can represent a schedule using a table.

• one column for each transaction

• operations are performed in the order
given by reading from top to bottom

• We can also write a schedule on a single line using this notation:

ri(A) = transaction Ti reads A
wi(A) = transaction Ti writes A

• example for the table above:

r1(A); r2(B); w1(A); r2(A); w2(A)

T2T1

r(B)

r(A)
w(A)

r(A)

w(A)

Serializability of Abstract Schedules

• How can we determine if an abstract schedule is serializable?

• given that we don't know the exact nature of the changes
made to the data

• We'll focus on the following:

• which transaction is the last one to write each data item

• that's the version that will be seen after the schedule

• which version of a data item is read by each transaction

• assume that if a transaction reads a different version,
its subsequent behavior might be different

Conflicts in Schedules

• A conflict is a pair of actions that can't be swapped without
potentially changing the behavior of one or more transactions.

• Examples in the schedule at right:

• w1(A) and r2(A)

• swapping them leads T2 to read a
different value of A

• this may cause T2 to behave differently

• w2(B) and w1(B)

• swapping them means later readers of B
will see a different value of B

• this may cause them to behave differently

• r1(B) and r2(B) do not conflict. why?

T2T1

r(B)

r(A)
w(A)
w(B)

…

r(B)

w(A)

w(B)
…

Which Actions Conflict?

• Actions in different transactions conflict if:
1) they involve the same data item

and 2) at least one of them is a write

• Pairs of actions that do conflict (assume i != j):

• wi(A); rj(A) the value read by Tj may change if we swap them

• ri(A); wj(A) the value read by Ti may change if we swap them

• wi(A); wj(A) subsequent reads may change if we swap them

• two actions from the same txn (their order is fixed by the client)

• Pairs of actions that don’t conflict:

• ri(A); rj(A) – two reads of the same item by different txns

• ri(A); rj(B)

• ri(A); wj(B)

• wi(A); rj(B)

• wi(A); wj(B)

operations on two different items
by different txns

Conflict Serializability

• Rather than ensuring serializability, it’s easier to ensure
a stricter condition known as conflict serializability.

• A schedule is conflict serializable if we can turn it into a
serial schedule by swapping pairs of consecutive actions
that don’t conflict.

r2(A); r1(A); r2(B); w1(A); w2(B); r1(B); w1(B)

r2(A); r2(B); r1(A); w1(A); w2(B); r1(B); w1(B)

r2(A); r2(B); r1(A); w2(B); w1(A); r1(B); w1(B)

r2(A); r2(B); w2(B); r1(A); w1(A); r1(B); w1(B)

• The final schedule is referred to as an equivalent serial schedule.

• serial – all of T2, followed by all of T1

• equivalent – it produces the same results as
the original schedule

Example of a Conflict Serializable Schedule

T2T1

r(A)
r(B)
w(B)

r(A)
w(A)
r(B)
w(B)

T2T1

r(A)

r(B)

w(B)

r(A)

w(A)

r(B)
w(B)

• Because conflicting pairs of actions can't be swapped,
they impose constraints on the order of the txns
in an equivalent serial schedule.

• example: if a schedule includes w1(A) … r2(A),
T1 must come before T2 in any equivalent serial schedule

• To test for conflict serializability:

• determine all such constraints

• make sure they aren’t contradictory

• Example: r2(A); r1(A); r2(B); w1(A); w2(B); r1(B); w1(B)

r2(A) … w1(A) means T2 must come before T1

r2(B) … w1(B) means T2 must come before T1

w2(B) … r1(B) means T2 must come before T1

w2(B) … w1(B) means T2 must come before T1

Thus, this schedule is conflict serializable.

Testing for Conflict Serializability

no contradictions,
so this schedule is
equivalent to the
serial ordering T2;T1

• What about this schedule? r1(B); w1(B); r2(B); r2(A); w2(A); r1(A)

• Which of the following pairs of actions from this schedule conflict?
(choose all that apply)

A. r1(B); r2(B)

B. r1(B); w2(A)

C. w1(B); r2(B)

D. r2(B); r2(A)

E. w2(A); r1(A)

Testing for Conflict Serializability (cont.)

• Tests for conflict serializability can use a precedence graph.
• the vertices/nodes are the transactions
• add an edge for each precedence constraint: T1 T2 means

T1 must come before T2 in an equivalent serial schedule

• Example: r2(A); r3(A); r1(B); w4(A); w2(B); r3(B)

r2(A) … w4(A) means T2 T4
r3(A) … w4(A) means T3 T4
r1(B) … w2(B) means T1 T2
w2(B) … r3(B) means T2 T3

• After the graph is constructed, we test for cycles
(i.e., paths of the form A … A).
• if the graph is acyclic, the schedule is conflict serializable

• use the constraints to determine an equivalent serial schedule
(in this case: T1;T2;T3;T4)

• if there's a cycle, the schedule is not conflict serializable

Using a Precedence Graph

T4T3

T1 T2

• Determine if the following are conflict serializable:

• r1(A); r3(A); r1(B); w2(A); r4(A); w2(B); w3(C); w4(C); r1(C)

r1(A) … w2(A) means T1 T2
r3(A) … w2(A) means T3 T2
r1(B) … w2(B) means T1 T2
w2(A) … r4(A) means T2 T4
w3(C) … w4(C) means T3 T4
w3(C) … r1(C) means T3 T1
w4(C) … r1(C) means T4 T1

• r1(A); w3(A); w4(A); w2(B); r2(B); r1(B); r4(B)

r1(A) … w3(A) means T1 T3
r1(A) … w4(A) means T1 T4
w3(A) … w4(A) means T3 T4
w2(B) … r1(B) means T2 T1
w2(B) … r4(B) means T2 T4

More Examples

T4T3

T2T1

no cycles, so conflict serializable.
equivalent to T2; T1; T3; T4

T4

T1 T2

T3

cycle: T1 T2 T4 T1
not conflict serializable

• Conflict serializability is a sufficient condition for serializability,
but it’s not a necessary condition.

• all conflict serializable schedules are serializable

• not all serializable schedules are conflict serializable

• Consider the following schedule involving three txns:

• It is not conflict serializable, because:
r2(A) … w1(A) means T2 T1

w1(A) … w2(A) means T1 T2

• It is serializable because its effects are
equivalent to either

T1; T2; T3 or T2; T1; T3 why?

Conflict Serializability vs. Serializability

T3T2T1

r(B)

w(A)

r(A)

r(B)

w(A)

r(A)

w(A)

• While serializability is important,
it isn’t enough for full isolation.

• Consider the serializable schedule at right.

• includes "c" actions that indicate when
the transactions commit

• Imagine that the system crashes:

• after T1’s commit

• before T2’s commit

• During recovery from the crash, the system:

• keeps all of T1’s changes,
because it committed before the crash

• undoes all of T2's changes,
because it didn't commit before the crash

Recoverability

T2T1

r(A)
w(B)

c

r(B)
w(A)

c
CRASH

• This is problematic!

• T1 reads T2's write of B

• it then performs actions that may
be based on the new value of B

• during recovery from the crash,
T2 is rolled back
 B's old value is restored

• it's possible T1 would have behaved
differently if it had read B's old value

• it's too late to roll back T1,
because it has already committed!

• We say that this schedule is unrecoverable.

• if a crash occurs between the two commits,
the process of recovering from the crash
could lead to problematic results

Recoverability (cont.)

T2T1

r(A)
w(B)

c

r(B)
w(A)

c
CRASH

• In a recoverable schedule,
if T1 reads a value written by T2,
T1 must commit after T2 commits.

• This allows us to safely recover
from a crash at any point:

Recoverability (cont.)

T2T1

r(A)
w(B)

c

r(B)
w(A)

c

T2T1

r(A)
w(B)

c

r(B)
w(A)

c

recoverableunrecoverable

T2T1

r(A)
w(B)

c

r(B)
w(A)

c

the writer of the
changed value
is rolled back,
but so is the reader

T2T1

r(A)
w(B)

c

r(B)
w(A)

c

CRASH

the reader is rolled back and
the writer isn't, but that's okay
since the writer didn't base its
actions on what the reader did

T2T1

r(A)
w(B)

c

r(B)
w(A)

c
CRASH

the reader of
the changed value
survives the crash,
but so does the writer

CRASH

Dirty Reads and Cascading Rollbacks

• Dirty data is data written by an uncommitted txn.

• it remains dirty until the txn is either:

• committed: in which case the data is no longer dirty
and it is safe for other txns to read it

• rolled back (either voluntarily or by the DBMS):
in which case the write of the dirty data is undone

• A dirty read is a read of dirty data.

• Dirty reads can lead to cascading rollbacks.

• if the writer of the dirty data is
rolled back, the reader must be, too

• We made our earlier schedule recoverable by switching
the order of the commits:

• Could the revised schedule lead to a cascading rollback?

• To get a casecadeless schedule, don’t allow dirty reads.

Dirty Reads and Cascading Rollbacks (cont.)

T2T1

r(A)
w(B)

c

r(B)
w(B)

c

T2T1

r(A)
w(B)

c

r(B)
w(B)

c

Goals for Schedules

• We want to ensure that schedules of concurrent txns are:

• serializable: equivalent to some serial schedule

• recoverable: ordered so that the system can safely
recover from a crash or undo an aborted transaction

• cascadeless: ensure that rolling back one transaction
does not produce a series of cascading rollbacks

• To achieve these goals, we use some type of
concurrency control mechanism.

• controls the actions of concurrent transactions

• prevents problematic interleavings

Extra Practice

• Is the schedule at right:

• conflict serializable?

• serializable?

• recoverable?

• cascadeless?

T2T1

r(B)

w(B)

r(A)

c

r(B)

w(A)

c

Extra Practice

• What scenarios involving the schedule
at right could produce cascading rollbacks?

T3T2T1

w(C)

r(A)
…

r(C)
w(B)

…

r(B)
w(A)

…

• Draw the precedence graph to find out!

w1(A); r2(B); r2(A); r4(A); w2(B); r4(B); w4(C); r3(D); w3(C)

A. Yes. It is equivalent to the serial schedule T1;T2;T3;T4

B. Yes. It is equivalent to the serial schedule T1;T2;T4;T3

C. No. The graph includes the cycle T1 T4 T2 T1

D. No. The graph includes the cycle T1 T2 T4 T1

Is This Schedule Conflict Serializable?

T4

T1 T2

T3

• Draw the precedence graph to find out!

w1(A); r2(B); r2(A); r4(A); w2(B); r4(B); w4(C); r3(D); w3(C); w1(D)

w1(A) … r3(A) means T1 T3
w1(A) … r2(A) means T1 T2
w1(A) … r4(A) means T1 T4
w2(B) … r4(B) means T2 T4
w4(C) … w3(C) means T4 T3

What If We Add This Write?

T4

T1 T2

T3

Concurrency Control

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

Goals for Schedules

• We want to ensure that schedules of concurrent txns are:

• serializable: equivalent to some serial schedule

• recoverable: ordered so that the system can safely
recover from a crash or undo an aborted transaction

• cascadeless: ensure that an abort of one transaction
does not produce a series of cascading rollbacks

• To achieve these goals, we use some type of
concurrency control mechanism.

• controls the actions of concurrent transactions

• prevents problematic interleavings

Locking

• Locking is one way to provide concurrency control.

• Involves associating one or more locks with each
database element.

• each page

• each record

• possibly even each collection

Locking Basics

• A transaction must
request and acquire
a lock for a data element
before it can access it.

• In our initial scheme,
every lock can be held
by only one txn at a time.

• As necessary, the DBMS:

• denies lock requests for elements that are currently locked

• makes the requesting transaction wait

• A transaction unlocks an element when it's done with it.

• After the unlock, the DBMS can grant the lock to a waiting txn.

• we’ll show a second lock request when the lock is granted

T2T1

l(X) denied; wait for T1

l(X) granted
r(X)
u(X)

l(X)
r(X)

w(X)
u(X)

Locking and Serializability

• Just having locks isn’t enough to guarantee serializability.

• Example: our problematic schedule can still be carried out.

T2T1

l(bal1);r(bal1)
l(bal2);r(bal2)

w(bal1)
u(bal1);u(bal2)

l(bal1);r(bal1)
w(bal1); u(bal1)

l(bal2);r(bal2)
w(bal2); u(bal2)

read balance1
write(balance1 – 500)

read balance2
write(balance2 + 500)

T1

read balance1
read balance2
if (balance1 + balance2 < min)

write(balance1 – fee)

T2

Two-Phase Locking (2PL)

• One way to ensure serializability is two-phase locking (2PL).

• 2PL requires that all of a txn’s lock actions come before
all its unlock actions.

• Two phases:

1. lock-acquisition phase:
a txn acquires locks, but it doesn't release any

2. lock-release phase:
once a txn releases a lock, it can't acquire any new ones

• Reads and writes can occur in both phases.

• provided that a txn holds the necessary locks

• 2PL is per-transaction.

• one txn could be in its lock-release phase
while another txn is still in its lock-acquisition phase

Two-Phase Locking (2PL) (cont.)

• In our earlier example, T1 does not follow the 2PL rule.

2PL would prevent
this interleaving.

• More generally, 2PL produces conflict serializable schedules.

T2T1

l(bal1);r(bal1)
l(bal2);r(bal2)

w(bal1)
u(bal1);u(bal2)

l(bal1);r(bal1)
w(bal1); u(bal1)

l(bal2);r(bal2)
w(bal2); u(bal2)

An Informal Argument for 2PL’s Correctness

• Consider schedules involving only two transactions.
To get one that is not conflict serializable, we need:

1) at least one conflict that requires T1 T2
• T1 operates first on the data item in this conflict
• T1 must unlock it before T2 can lock it: u1(A) .. l2(A)

2) at least one conflict that requires T2 T1
• T2 operates first on the data item in this conflict
• T2 must unlock it before T1 can lock it: u2(B) .. l1(B)

• Consider all of the ways these pairs of actions could be ordered:
.. u1(A) .. l2(A) .. u2(B) .. l1(B) ..
.. u2(B) .. l1(B) .. u1(A) .. l2(A) ..
.. u1(A) .. u2(B) .. l2(A) .. l1(B) ..
.. u2(B) .. u1(A) .. l1(B) .. l2(A) ..
.. u1(A) .. u2(B) .. l1(B) .. l2(A) ..
.. u2(B) .. u1(A) .. l2(A) .. l1(B) ..

• none of these are possible
under 2PL, because they
require at least one txn
to lock after unlocking.

The Need for Different Types of Locks

• With only one type of lock, overlapping transactions can't
read the same data item, even though two reads don't conflict.

• To get around this, use more than one mode of lock.

Exclusive vs. Shared Locks

• An exclusive lock allows a transaction to write or read an item.

• gives the txn exclusive access to that item

• only one txn can hold it at a given time

• xli(A) = transaction Ti requests an exclusive lock for A

• if another txn holds any lock for A,
Ti must wait until that lock is released

• A shared lock only allows a transaction to read an item.

• multiple txns can hold a shared lock for the
same data item at the same time

• sli(A) = transaction Ti requests a shared lock for A

• if another txn holds an exclusive lock for A,
Ti must wait until that lock is released

Lock Compatibility Matrix

• Used to specify when a lock request for a currently locked item
should be granted.

mode of lock
requested for item

exclusiveshared

noyesshared

nonoexclusive

mode of
existing lock
for that item

(held by a
different txn)

Examples of Using Shared and Exclusive Locks

sli(A) = transaction Ti requests a shared lock for A
xli(A) = transaction Ti requests an exclusive lock for A

• Examples:

T2T1

xl(A); w(A)

sl(B);r(B)

u(A); u(B)

sl(B); r(B)

xl(C); r(C)

w(C)
u(B); u(C)

without shared locks,T2 would need to wait
until T1 unlocked B

Note: T1 acquires an exclusive lock
before reading C. Why?

What About Recoverability / Cascadelessness?

• 2PL alone does not guarantee either of them.

• Example: 2PL?

not recoverable. why not?

not cascadeless. why not?

T2T1

xl(A); w(A)
sl(C)
u(A)

r(C); u(C)

commit

xl(A); r(A)

w(A); u(A)
commit

Strict Locking

• Strict locking makes txns hold all exclusive locks until
they commit or abort.

• doing so prevents dirty reads, which means schedules
will be recoverable and cascadeless

What else needs to change?

T2T1

xl(A); w(A)
sl(C)
u(A)

r(C); u(C)

commit

xl(A); r(A)

w(A); u(A)
commit

T2T1

xl(A); w(A)
sl(C)

r(C); u(C)

commit
u(A)

xl(A); r(A)

w(A)
commit

u(A)

Strict Locking

• Strict locking makes txns hold all exclusive locks until
they commit or abort.

• doing so prevents dirty reads, which means schedules
will be recoverable and cascadeless

• strict + 2PL = strict 2PL

T1 can't acquire the lock for A
until after T2 commits.
Thus, its read of A is not dirty!

T2T1

xl(A); w(A)
sl(C)
u(A)

r(C); u(C)

commit

xl(A); r(A)

w(A); u(A)
commit

T2T1

xl(A); w(A)
sl(C)

r(C); u(C)

commit
u(A)

xl(A); wait

xl(A); r(A)

w(A)
commit

u(A)

Rigorous Locking

• Under strict locking, it's possible to get something like this:

• Rigorous locking requires txns to hold all locks until commit/abort.

• It guarantees that transactions commit in the same order
as they would in the equivalent serial schedule.

• rigorous + 2PL = rigorous 2PL

• T3 reports A's new value.

• T1 reports A's old value,
even though it commits
after T3.

• the ordering of commits
(T2,T3,T1) is not same
as the equivalent serial
ordering (T1,T2,T3)

T3T2T1

sl(A); r(A)
commit

u(A)
print A

xl(A); w(A)
commit

u(A)

…
sl(A); r(A)

u(A)

…

commit
print A

Deadlock

• Consider the following schedule:

• This schedule produces deadlock.
• T1 is waiting for T2 to unlock A
• T2 is waiting for T1 to unlock B
• neither can make progress!

• We'll see later how to deal with this.

T2T1

xl(A);w(A)

xl(B)
denied;

wait for T1

sl(B);r(B)

sl(A)
denied;

wait for T2

Lock Upgrades

• It can be problematic to acquire
an exclusive lock earlier than
necessary.

• Instead:

• acquire a shared lock to read
the item

• upgrade to an exclusive lock
when you need to write

• may need to wait to upgrade
if others hold shared locks

• Note: we're not releasing the
shared lock before acquiring the
exclusive one. why not?

T2T1

sl(A)
waits a long
time for T1!

r(A) finally!

xl(A)
r(A)

VERY LONG
computation

w(A)
u(A)

T2T1

sl(A)
r(A) right away!

u(A)

sl(A)
r(A)

VERY LONG
computation

xl(A)
w(A)
u(A)

A Problem with Lock Upgrades

• Upgrades can lead to deadlock:

• two txns each hold a shared lock for an item
• both txns attempt to upgrade their locks
• each txn is waiting for the other to release its shared lock
• deadlock!

• Example:
T2T1

sl(A)
r(A)

xl(A)
denied;

wait for T1

sl(A)
r(A)

xl(A)
denied;

wait for T2

Update Locks

• To avoid deadlocks from lock upgrades, some systems
provide two different lock modes for reading:

• shared locks – used if you only want to read an item

• update locks – used if you want to read an item
and later update it

update lockshared lock

read the locked item
(in anticipation of
updating it later)

read the locked item what does holding this
type of lock let you do?

yesno (not in this
locking scheme)

can it be upgraded to
an exclusive lock?

only one (and thus
there can't be a
deadlock from two
txns trying to upgrade!)

an arbitrary numberhow many txns can hold
this type of lock for a
given item?

Different Locks for Different Purposes

• If you only need to read an item, acquire a shared lock.

• If you only need to write an item, acquire an exclusive lock.

• If you need to read and then write an item:

• acquire an update lock for the read

• upgrade it to an exclusive lock for the write

• this sequence of operations is sometimes called
read-modify-write (RMW)

Compatibility Matrix with Update Locks

• When there are one or more shared locks on an item,
a txn can still acquire an update lock for that item.

• allows for concurrency on the read portion of RMW txns

• There can't be more than one update lock on an item.

• prevents deadlocks when upgrading from update to exclusive

• If a txn holds an update lock on an item, other txns
can't acquire any new locks on that item.
• prevents the RMW txn from waiting indefinitely to upgrade

mode of lock requested for item

updateexclusiveshared

yesnoyesshared

nononoexclusive

nononoupdate

mode of
existing lock
for that item

(held by a
different txn)

Examples of Using Update Locks
uli(A) = Ti requests an update lock for AT3T2T1

 request A?

 request B

 request C

 request D

sl(A)
r(A)

ul(C)
r(C)

sl(A)
r(A)

ul(B)
r(B)

xl(A)
w(A)

sl(B)
r(B)
ul(C)
r(C)

xl(C)
w(C)
…

Detecting and Handling Deadlocks

• When DBMS detects a deadlock, it roll backs one of the
deadlocked transactions.

• Can use a waits-for graph to detect the deadlock.
• the vertices are the transactions
• an edge from T1 T2 means

T1 is waiting for T2 to release a lock
• a cycle indicates a deadlock

• Example:
T3T2T1

xl(C)

sl(A)
denied;

wait for T1
sl(B)
sl(C)

denied;
wait for T3

xl(A)

xl(B)
denied;

wait for T2

T3

T1 T2

cycle – deadlock!

• Would the following schedule produce deadlock?

r1(B); w1(B); r3(A); r2(C); r2(B); r1(A); w1(A); w3(C); w2(A); r1(C); w3(A)

• assume: no update locks;
a lock for an item is acquired just before it is first needed

Another Example

T3T2T1

sl(A); r(A)

sl(C); r(C)

sl(B); r(B)
xl(B); w(B)

T3

T1 T2

• Would the following schedule produce deadlock?

w1(A); w3(B); r3(C); r2(D); r1(D); w1(D); w2(C); r3(A); w2(A)

• assume: no update locks;
a lock for an item is acquired just before it is first needed

Extra Practice (try this later on your own!)

T3T2T1

T3

T1 T2

Optimistic Concurrency Control

• Locking is pessimistic.

• assumes serializability will be violated

• prevents transactions from performing actions that might
violate serializability

• example:

• There are other approaches that are optimistic.

• assume serializability will be maintained

• only interfere with a transaction if it actually does something
that violates serializability

• We’ll look at one such approach – one that uses timestamps.

T2T1

xl(A); w(A)

xl(B)
sl(B); r(B)

…
denied, because T1
might read B again

Timestamp-Based Concurrency Control

• In this approach, the DBMS assigns timestamps to txns.

• TS(T) = the timestamp of transaction T

• the timestamps must be unique

• TS(T1) < TS(T2) if and only if T1 started before T2

• The system ensures that all operations are consistent with
a serial ordering based on the timestamps.

• if TS(T1) < TS(T2), the DBMS only allows actions that
are consistent with the serial schedule T1; T2

Timestamp-Based Concurrency Control (cont.)

• Examples of actions that are not allowed:

• example 1:

T2T1

TS = 100
r(C)

r(A)

TS = 102
w(A)

not allowed

• T2 starts before T1

• thus, T2 comes before T1 in the
equivalent serial schedule (see left)

• in the serial schedule,
T2 would not see see T1's write

• thus, T2's read should have come before
T1's write, and we can't allow the read

• we say that T2’s read is too late

T2T1

TS = 100
r(C)
r(A)
...

TS = 102
w(A)

...

actual schedule

equivalent serial schedule

Timestamp-Based Concurrency Control (cont.)

• Examples of actions that are not allowed:

• example 2:

T2T1

TS = 209
r(B)

TS = 205
r(A)

w(B)

not allowed

• T1 starts before T2

• thus, T1 comes before T2 in the
equivalent serial schedule (see left)

• in the serial schedule,
T2 would see T1's write

• thus, T1's write should have come before
T2's read, and we can't allow the write

• we say that T1’s write is too late

T2T1

TS = 209
r(B)
...

TS = 205
r(A)
w(B)

...

actual schedule

equivalent serial schedule

Timestamp-Based Concurrency Control (cont.)

• When a txn attempts to perform an action that is inconsistent
with a timestamp ordering:

• the offending txn is rolled back

• it is restarted with a new, larger timestamp

• With a larger timestamp, the txn comes later in the
equivalent serial ordering.

• allows it to perform the offending operation

• Rolling back the txn ensures that all of its actions correspond
to the new timestamp.

Timestamps on Data Elements

• To determine if an action should be allowed, the DBMS
associates two timestamps with each data element:

• a read timestamp:
RTS(A) = the largest timestamp of any txn that has read A
• the timestamp of the reader that comes latest

in the equivalent serial ordering

• a write timestamp:
WTS(A) = the largest timestamp of any txn that has written A
• the timestamp of the writer that comes latest

in the equivalent serial ordering
• the timestamp of the txn that wrote A's current value

Timestamp Rules for Reads

• When T tries to read A:

• if TS(T) < WTS(A), roll back T and restart it

• T comes before the txn that wrote A,
so T shouldn't be able to see A’s current value

• T’s read is too late (see our earlier example 1)

• else allow the read

• T comes after the txn that wrote A, so the read is OK

• the system also updates RTS(A):

RTS(A) = max(TS(T), RTS(A))

• why can't we just set RTS(A) to T's timestamp?

Timestamp Rules for Reads (cont.)

• Example: assume that T1 wants to read A,
and we have the following timestamps:

TS(T1) = 30 WTS(A) = 10

TS(T2) = 50 RTS(A) = 50

• T1 started before T2 (30 < 50)

• thus T1 comes before T2 in the equivalent serial ordering

• T2 has already read A. How do we know? RTS(A) = TS(T2)

• Despite that, it's okay for T1 to read A.

• reads don't conflict, so we don't care about the
equivalent serial ordering of two readers of an item

• what matters is that T1 comes after the writer
of A's current value (30 > 10)

Timestamp Rules for Writes

• When T tries to write A:

• if TS(T) < RTS(A), roll back T and restart it

• T comes before the txn that read A, so that other txn
should have read the value T wants to write

• T’s write is too late (see our earlier example 2)

• else if TS(T) < WTS(A), ignore the write and let T continue

• T comes before the txn that wrote A's current value

• thus, in the equivalent serial schedule,
T's write would have been overwritten by A's current value

• else allow the write

• how should the system update WTS(A)?

Thomas Write Rule

• The policy of ignoring out-of-date writes is known as the
Thomas Write Rule:

…else if TS(T) < WTS(A), ignore the write and let T continue

• What if there is a txn that should have read A between
the two writes? It's still okay to ignore T's write of A.

• example:
• TS(T) = 80, WTS(A) = 100 we ignore T's write of A

what if txn U with TS(U) = 90 is supposed to read A?

• if U had already read A, Thomas write rule wouldn't apply:

• RTS(A) = 90

• T would be rolled back because TS(T) < RTS(A)

• if U tries to read A after we ignore T's write:

• U will be rolled back because TS(U) < WTS(A)

Example of Using Timestamps

• They prevent our problematic balance-transfer example.

what’s the problem here?

bal2bal1T2T1

RTS = WTS = 0

RTS = 375

RTS: no change

RTS = WTS = 0

RTS = 350
WTS = 350

RTS = 375
WTS = 375

TS = 375
r(bal1); r(bal2)

w(bal1)

TS = 350
r(bal1)
w(bal1)

r(bal2)
w(bal2)

denied:rollback

read balance1
write(balance1 – 500)

read balance2
write(balance2 + 500)

T1

read balance1
read balance2
if (balance1 + balance2 < min)

write(balance1 – fee)

T2

Preventing Dirty Reads Using a Commit Bit

• We associate a commit bit c(A) with each data element A.

• tells us whether the writer
of A's value has committed

• initially, c(A) is true

• When a txn is allowed to write A:

• set c(A) to false

• update WTS(A) as before

• If the timestamps would allow
a txn to read A but c(A) is false,
the txn is made to wait.

• preventing a dirty read!

• When A's writer commits, we:

• set c(A) to true

• allow waiting txns try again

AT2T1

RTS = 0
WTS = 0
c = true

RTS = 200

c = false
WTS = 200

c = true

TS = 210
r(A)

denied:
wait

r(A)?

TS = 200

r(A)

w(A)

commit

Preventing Dirty Reads Using a Commit Bit (cont.)

• If a txn is allowed to write A
and c(A) is already false:

• c(A) remains false

• update WTS(A) as before

• If the timestamps would cause
a txn's write of A to be ignored
but c(A) is false, the txn must wait.

• we'll need its write if the
writer of A's current value
is rolled back

AT2T1

RTS = 0
WTS = 0
c = true

c = false
WTS = 400

c stays false
WTS = 450

c = true

TS = 400
w(A)

w(A)
denied:

wait

w(A)
ignored

…

TS = 450
w(A)

commit

Preventing Dirty Reads Using a Commit Bit (cont.)

• Note: c(A) remains false until
the writer of the current value
commits.

• Example: what if T2 had
committed after T1's write?

AT2T1

RTS = 0
WTS = 0
c = true

c = false
WTS = 400

c stays false
WTS = 450

TS = 400
w(A)

commit
denied:

wait

w(A)
ignored

…

TS = 450
w(A)

Preventing Dirty Reads Using a Commit Bit (cont.)

• What happens when a txn T
is rolled back?

• restore the prior state
(value and timestamps)
of all data elements of which
T is the most recent writer

• set the commit bits of those
elements based on whether
the writer of the prior value
has committed

• make waiting txns try again

• in addition, if there were a
data element B for which
RTS(B) == TS(T), we would
restore its old RTS value

AT2T1

RTS = 0
WTS = 0
c = true

c = false
WTS = 400

c stays false
WTS = 450

WTS = 400

c = false

no changes

TS = 400
w(A)

w(A)
denied:

wait

w(A)
allowed!

TS = 450
w(A)

roll back

Example of Using Timestamps and Commit Bits

• The balance-transfer example would now proceed differently.

bal2bal1T2T1

RTS = WTS = 0
c = true

RTS = 350
WTS = 350; c = false

c = true

RTS = WTS = 0
c = true

RTS = 350
WTS = 350; c = false

c = true
RTS = 375

TS = 375
r(bal1)

denied: wait

r(bal1)
and completes

TS = 350
r(bal1)
w(bal1)

r(bal2)
w(bal2)
commit

read balance1
write(balance1 – 500)

read balance2
write(balance2 + 500)

T1

read balance1
read balance2
if (balance1 + balance2 < min)

write(balance1 – fee)

T2

Multiversion Timestamp Protocol

• To reduce the number of rollbacks, the DBMS can keep old
versions of data elements, along with the associated timestamps.

• When a txn T tries to read A, it's given the version of A that it
should read, based on the timestamps.

• the DBMS never needs to roll back a read-only transaction!

A(105)A(0)T3T2T1

created
RTS = 0; WTS = 105
c = false; val = “bar”

c = true

RTS = 112

RTS = WTS = 0
c = true; val = “foo”

RTS = 105

no change

TS = 112
r(A)

get A(105)

TS = 101

r(A): get A(0)

TS = 105

r(A)
w(A)

commit

two different versions of A

Multiversion Timestamp Protocol (cont.)

• Because each write creates a new version,
the WTS of a given version never changes.

• The DBMS maintains RTSs and commit bits for each version,
and it updates them using the same rules as before.

• If txn T attempts to write A:

• find the version of A that T should be overwriting
(the one with the largest WTS < TS(T))

• compare TS(T) with the RTS of that version

• example: txn T (TS = 50)
wants to write A
• it should be overwriting A(0)
• show we allow its write

and create A(50)?

A(105)A(0)

RTS = 0RTS = 75

Multiversion Timestamp Protocol (cont.)

• If T's write of A is not too late:

• create a new version of A with WTS = TS(T)

• Writes are never ignored.

• there may be active txns that should read that version

• Versions can be discarded as soon as there are no active
transactions that could read them.

• can discard A(t1) if:

• there is another, later version, A(t2), with t2 > t1

and

• there is no active transaction with a TS < t2

• example: we can discard A(0)
as soon as …?

A(105)A(0)

RTS = 0RTS = 75

Locking vs. Timestamps

• Advantages of timestamps:

• txns spend less time waiting

• no deadlocks

• Disadvantages of timestamps:

• can get more rollbacks, which are expensive

• may use somewhat more space to keep track of timestamps

• Advantages of locks:

• only deadlocked txns are rolled back

• Disadvantages of locks:

• unnecessary waits may occur

The Best of Both Worlds

• Combine 2PL and multiversion timestamping!

• Transactions that perform writes use 2PL.

• their actions are governed by locks, not timestamps

• thus, only deadlocked txns are rolled back

• Multiple versions of data elements are maintained.

• each write creates a new version

• the WTS of a version is based on when the writer commits,
not when it started

• Read-only transactions do not use 2PL.

• they are assigned timestamps when they start

• when T reads A, it gets the version from right before T started
• will only get a version whose writer has committed

• read-only txns never need to wait or be rolled back!

Summary: Timestamp Rules for Reads and Writes

• When T tries to read A:

• if TS(T) < WTS(A), roll back T and restart it

• T’s read is too late

• else allow the read

• set RTS(A) = max(TS(T), RTS(A))

• When T tries to write A:

• if TS(T) < RTS(A), roll back T and restart it

• T’s write is too late

• else if TS(T) < WTS(A), ignore the write and let T continue

• in the equiv serial sched, T’s write would be overwritten

• else allow the write

• set WTS(A) = TS(T)

when not using commit bits

Summary: Timestamp Rules for Reads and Writes

• When T tries to read A:

• if TS(T) < WTS(A), roll back T and restart it

• T’s read is too late

• else allow the read (but if c(A) == false, make it wait)

• set RTS(A) = max(TS(T), RTS(A))

• When T tries to write A:

• if TS(T) < RTS(A), roll back T and restart it

• T’s write is too late

• else if TS(T) < WTS(A), ignore the write and let T continue
(but if c(A) == false, make it wait)

• in the equiv serial sched, T’s write would be overwritten

• else allow the write

• set WTS(A) = TS(T) (and set c(A) to false)

when using commit bits

Summary: Other Details for Commit Bits

• When the writer of the current value of data item A commits, we:

• set c(A) to true

• allow waiting txns try again

• When a txn T is rolled back, we process:

• all data elements A for which WTS(A) == TS(T)

• restore their prior state (value and timestamps)

• set their commit bits based on whether the writer of
the prior value has committed

• make waiting txns try again

• all data elements A for which RTS(A) == TS(T)

• restore their prior RTS

Extra Practice Problem 1

• How will this schedule be executed?
w1(A); w2(A); r3(B); w3(B); r3(A); r2(B); w1(B); r2(A)

BAT3T2T1

RTS = WTS = 0
c = true

RTS = WTS = 0
c = true

Extra Practice Problem 2

• How will this schedule be executed?
r1(B); r2(B); w1(B); w3(A); w2(A); w3(B); commit3; r2(A)

BAT3T2T1

RTS = WTS = 0
c = true

RTS = WTS = 0
c = true

denied:
wait

denied:
roll back

denied:
roll back

Semistructured Data and XML

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

Structured Data

• We've covered two logical data models thus far:

• ER diagrams

• relational schemas

• Both use a schema to define the structure of the data.

• The schema in these models is:

• separate from the data itself

• rigid: all data items of a particular type must have the
same set of fields/attributes

Semistructured Data

• In semistructured data:

• there may or may not be a separate schema

• the schema is not rigid

• example: capturing people's addresses

• some records may have 4 separate fields:
• street, city, state, zip

• other records may use a single address field

• Semistructured data is self-documenting.

• information describing the data is embedded with the data

<course>
<name>CS 460</name>
<begin>1:25</begin>
…

</course>

Semistructured Data (cont.)

• Its features facilitate:

• the integration of information from different sources

• the exchange of information between applications

• Example: company A receives data from company B

• A only cares about certain fields in certain types of records

• B's data includes:

• other types of records

• other fields within the records that company A cares about

• with semistructured data, A can easily recognize and ignore
unexpected elements

• the exchange is more complicated with structured data

XML (Extensible Markup Language)

• One way of representing semistructured data.

• Like HTML, XML is a markup language.

• it annotates ("marks up") documents with tags

• tags generally come in pairs:

• begin tag: <tagname>

• end tag: </tagname>

• example:
Like HTML, XML is a markup language.

• Unlike HTML, XML is extensible.

• the set of possible tags – and their meaning – is not fixed

HTML begin tag for a list item HTML end tag for a list item

XML Elements

• An XML element is:

• a begin tag

• an end tag (in some cases, this is merged into the begin tag)

• all info. between them.

• example:

<name>CS 460</name>

• An element can include other nested child elements.
<course>

<name>CS 460</name>
<begin>1:25</begin>
…

</course>

• Related XML elements are grouped together into documents.

• may or may not be stored as an actual text document

XML Attributes

• An element may also include attributes that describe it.

• Specified within the element’s begin tag.

• syntax: name="value"

• Example:
<course catalog_number="12345" exam_group="16">

<name>CS 460</name>
<begin>1:25</begin>
…

</course>

Attributes vs. Child Elements

• The string values used for attributes can serve special purposes
(more on this later)

child elementattribute

an arbitrary number
of times

at most once in a
given element

number of
occurrences

can have its own
children

always a stringvalue

Well-Formed XML

• In a well-formed XML document:

• there is a single root element that contains all other elements

• may optionally be preceded by an XML declaration
(more on this in a moment)

• each child element is completely nested within its parent

• this would not be allowed:
<course><name>CS 460</name>

<time>
<begin>1:25</begin>
<end>2:15</end>

</course>
</time>

• The elements need not correspond to any predefined standard.
• a separate schema is not required

Example of an XML Document
<?xml version="1.0" standalone="yes"?>
<university-data>

<course>
<name>CS 111</name>
<start>10:10</start>
<end>11:00</end>

</course>
<room>

<bldg>CAS</bldg>
<num>B12</num>

</room>
<course>

<name>CS 460</name>
<time>

<begin>1:25</begin>
<end>2:15</end>

</time>
</course>
...

</university-data>

optional declaration

single root element

Specifying a Separate Schema

• XML doesn’t require a separate schema.

• However, we still need one if we want programs to:

• easily process XML documents

• validate the contents of a given document

• The resulting schema can still be semistructured.

• for example, can include optional components

• more flexible than ER models and relational schema

Special Types of Attributes

• ID an identifier that must be unique within the document
(among all ID attributes – not just this attribute)

• IDREF a single value that is the value of an ID attribute
elsewhere in the document

• IDREFS a list of ID values from elsewhere in the document

Capturing Relationships in XML

• Two options:

1. store references from one element to other elements using
ID, IDREF and IDREFS attributes:

<course cid="C20119" teacher="P123456">
<cname>CS 111</cname>
…

</course>

<course cid="C20268" teacher="P123456">
<cname>CS 460</cname>
…

</course>

<person pid="P123456" teaches="C20119 C20268">
<pname>

<last>Sullivan</last>
<first>David</first>

</pname>
</person>

• where have we seen something similar?

Capturing Relationships in XML (cont.)

2. use child elements:

<course cid="C20119">
<cname>CS 111</cname>
<teacher id="P123456">David Sullivan</teacher>

</course>

…
<person pid="P123456">

<pname>
<last>Sullivan</last>
<first>David</first>

</pname>
<courses-taught>

<course-taught>CS 111</course-taught>
<course-taught>CS 460</course-taught>

</courses-taught>
</person>

• There are pluses and minuses to each approach.

• we'll revisit this design issue later in the course

Summary: Features of an XML Document
<?xml version="1.0" standalone="yes"?>

<university-data>
<course cid="C20268" teacher="P123456">

<name>CS 460</name>
<start>1:25</start>
<end>2:15</end>

</course>
<course cid="C20119" teacher="P123456" room="CAS 522">

<name>CS 111</name><start>10:10</start><end>11:00</end>
</course>
<person pid="P123456"

teaches="C20119 C20268">
<name>

<last>Sullivan</last>
<first>David</first>

</name>
</person>
<holiday date="04/15/2019" />
...

</university-data>

optional declaration

single root element

• Elements can have other
child elements nested inside them.

• Attributes are found in the
start tag of an element.

• Simple elements have no children
or attributes.

• Empty elements only have a
start tag (and possibly attributes)

• use a / at end of start tag

XML Documents as Trees
<?xml version="1.0" standalone="yes"?>
<university-data>

<course><name>CS 460</name>
<start>1:25</start>
<end>2:15</end>

</course>
…

<course><name>CS 111</name>
<start>10:10</start>
<end>11:00</end>

</course>
…

</university-data>

• Elements correspond to nodes in the tree.

• root element == root node of the entire tree

• child element == child of a node

• leaf nodes == empty elements or ones without child elements

• Start tags are edge labels.

• Attributes and text values are data stored in the node.

course

start

endname

CS 460

1:25

2:15

course

start

endname

CS 111

10:10

11:00

university-data

XPath Expressions

• Used to specify one or more elements or attributes by
providing a path to the relevant nodes in the document tree.

• like a pathname in a hierarchical filesystem

• Expressions that begin with / specify a path that begins
at the root of the document.

/university-data/course

• selects all course elements
that are children of the
university-data root element

course

start

endname

course

start

endname

university-data

CS 460

1:25

2:15 CS 111

10:10

11:00

XPath Expressions

• Used to specify one or more elements or attributes by
providing a path to the relevant nodes in the document tree.

• like a pathname in a hierarchical filesystem

• Expressions that begin with / specify a path that begins
at the root of the document.

/university-data/course

• selects all course elements
that are children of the
university-data root element

• Expressions that begin with //
select elements from anywhere
in the document.

//course

• selects all course elements,
regardless of where they appear

course

start

endname

course

start

name

university-data

prereqs

course

start

name

CS 112

end

end

11:30

CS 460

1:25

2:15 CS 111

10:10

11:00

XPath Expressions (cont.)

• Attribute names are preceded by an @ symbol:

• example: //person/@pid
• selects all pid attributes of all person elements

• We can specify a particular document as follows:

document("doc-name")path-expression

• example:

document("university.xml")//course/start

Predicates in XPath Expressions
<course cid="C20119" teacher="P123456" room="CAS 522">

<name>CS 111</name><start>10:10</start><end>11:00</end>
</course>

<course cid="C20268" teacher="P123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>

</course>

<course cid="C20757" teacher="P778787" room="COM 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>

</course>

• Example:
//course[@teacher="P123456"]

• selects all course elements with a teacher attribute of "P123456"

• In general, predicates are:

• surrounded by square brackets

• applied to elements selected by the preceding path expression

Predicates in XPath Expressions (cont.)

<course cid="C20119" teacher="P123456" room="CAS 522">
<name>CS 111</name><start>10:10</start><end>11:00</end>

</course>

<course cid="C20268" teacher="P123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>

</course>

<course cid="C20757" teacher="P778787" room="COM 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>

</course>

//course[name="CS 460"]

• selects all course elements with a name child element
whose value is "CS 460"
 <course cid="C20268" teacher="P123456">

<name>CS 460</name><start>1:25</start><end>2:15</end>
</course>

//course[start="1:25"]/name

Predicates in XPath Expressions (cont.)

<course cid="C20119" teacher="P123456" room="CAS 522">
<name>CS 111</name><start>10:10</start><end>11:00</end>

</course>

<course cid="C20268" teacher="P123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>

</course>

<course cid="C20757" teacher="P778787" room="COM 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>

</course>

//course[name="CS 112"]/@room

Predicates in XPath Expressions (cont.)

<course cid="C20119" teacher="P123456" room="CAS 522">
<name>CS 111</name><start>10:10</start><end>11:00</end>

</course>

<course cid="C20268" teacher="P123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>

</course>

<course cid="C20757" teacher="P778787" room="COM 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>

</course>

• We can test for the presence of an element or attribute:

• example: //course[@room]
• selects all course elements that have a specified room attribute

• We can use the contains() function for substring matching:

• example: //course[contains(name, "CS")]

Predicates in XPath Expressions (cont.)

<room>
<building>CAS</building><room_num>212</room_num>

</room>
<room>

<building>CAS</building><room_num>100</room_num>
</room>
<room>

<building>KCB</building><room_num>101</room_num>
</room>
<room>

<building>PSY</building><room_num>228D</room_num>
</room>

• Use . to represent nodes selected by the preceding path.

//room/room_num[. < 200]

• selects all room_num elements with values < 200

//room[room_num < 200]

• selects all room elements with room_num child values < 200

Predicates in XPath Expressions (cont.)

<room>
<building>CAS</building><room_num>212</room_num>

</room>
<room>

<building>CAS</building><room_num>100</room_num>
</room>
<room>

<building>KCB</building><room_num>101</room_num>
</room>
<room>

<building>PSY</building><room_num>228D</room_num>
</room>

• Use .. to represent the parents of the nodes selected by
the preceding path.

//room_num[../building="CAS"]

• selects all room_num elements for parent elements that also
have a building child whose value is "CAS"

• this is similar: //room[building="CAS"]/room_num

<room_num>212</room_num>
<room_num>100</room_num>

Predicates in XPath Expressions (cont.)

<room>
<building>CAS</building><room_num>212</room_num>

</room>
<office>

<building>CAS</building><room_num>100</room_num>
</office>
<room>

<building>KCB</building><room_num>101</room_num>
</room>
<office>

<building>PSY</building><room_num>228D</room_num>
</office>

• If there are other elements that also have nested
room_num and building elements (like office elements above)

• //room_num[../building="CAS"] will get room_num children
from all such elements with a building child = "CAS"

• //room[building="CAS"]/room_num will only get
room_num children from room elements with a
building child = "CAS"

What would this expression select?
<course cid="C20119" teacher="P123456" room="CAS 522">

<name>CS 111</name><start>10:10</start><end>11:00</end>
</course>

<course cid="C20268" teacher="P123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>

</course>

<course cid="C20757" teacher="P778787" room="COM 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>

</course>

//end[../@teacher="P778787"]

A. <course cid="C20757" teacher="P778787" room="COM 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>

</course>

B. <course teacher="P778787"><end>12:45</end></course>

C. <end>12:45</end>

D. none of these

Which of these would select the highlighted element?
<course id="C20119" teacher="P123456" room="011">

<name>CS 111</name><start>10:10</start><end>11:00</end>
</course>

<course id="C20268" teacher="P123456">
<name>CS 460</name><start>13:25</start><end>14:15</end>

</course>

<course id="C20757" teacher="P778787" room="789">
<name>CS 112</name><start>11:30</start><end>12:45</end>

</course>

A. //course[start = "10:10"]

B. //course/start[. = "10:10"]

C. /course/start[. = "10:10"]

D. /course[start = "10:10"]

E. //start[../end = "11:00"]

XQuery and FLWOR Expressions

• XQuery is to XML documents what SQL is to relational tables.

• XPath is a subset of XQuery.

• every XPath expression is a valid XQuery query

• In addition, XQuery provides FLWOR expressions.

• similar to SQL SELECT commands

• syntax: for $fvar1 in Xpath_f1,
$fvar2 in Xpath_f2,…

let $lvar1 := Xpath_l1, …
where condition
order by Xpath_o1, …
return result-format

• The for clause is like the FROM clause in SQL.

• the query iterates over all combinations of values from its
XPath expressions (like Cartesian product!)

• query above looks at combos of CAS rooms and courses

• The let clause is applied to each combo. from the for clause.

• each variable gets the full set produced by its XPath expr.

• unlike a for clause, which assigns the results of the
XPath expression one value at a time

FLWOR Expressions

for $r in //room[contains(name, "CAS")],
$c in //course

let $e := //person[contains(@enrolled, $c/@id)]
where $c/@room = $r/@id and count($e) > 20
order by $r/name
return ($r/name, $c/name)

• The where clause is applied to the results of for and let.

• If the where clause is true, the return clause is applied.

• The order by clause can be used to sort the results.

FLWOR Expressions (cont.)

for $r in //room[contains(name, "CAS")],
$c in //course

let $e := //person[contains(@enrolled, $c/@id)]
where $c/@room = $r/@id and count($e) > 20
order by $r/name
return ($r/name, $c/name)

• It's sometimes possible to move components of the
where clause up into the for clause as predicates.

• In the above query, we could move the first condition up:

for $r in //room[contains(name, "CAS")],
$c in //course[@room = $r/@id]

let $e := //person[contains(@enrolled, $c/@id)]
where count($e) > 20
order by $r/name
return ($r/name, $c/name)

Note: The Location of Predicates

for $r in //room[contains(name, "CAS")],
$c in //course

let $e := //person[contains(@enrolled, $c/@id)]
where $c/@room = $r/@id and count($e) > 20
order by $r/name
return ($r/name, $c/name)

return Clause
<course cid="C20119" teacher="P123456" room="CAS 522">

<name>CS 111</name><start>10:10</start><end>11:00</end>
</course>

<course cid="C20268" teacher="P123456">
<name>CS 460</name><start>13:25</start><end>14:15</end>

</course>

<course cid="C20757" teacher="P778787" room="COM 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>

</course>

• Like the SELECT clause in SQL.

• Can be used to perform something like a projection.

for $c in //course
where $c/start > "11:00"
return $c/name

 <name>CS 460</name>
<name>CS 112</name>

$c =

return Clause (cont.)

• Another example:
for $c in //course
where $c/start > "11:00"
return ($c/name, $c/start, " ")

• To return multiple elements/attributes for each item:

• separate them using a comma

• surround them with parentheses, because the comma
operator has higher precedence and would end the FLWOR

• you can also include string literals

• above, we specify a blank line after the start time

• full elements already appear on separate lines,
so we don't need spaces for that

Reshaping the Output

• We can reshape the output by constructing new elements:
for $c in //course
where $c/start > "11:00"
return <after11-course>

{$c/name/text(), " - ", $c/start/text()}
</after11-course>

• the text() function gives just the value of a simple element

• without its start and end tags

• when constructing a new element, need curly braces
around expressions that should be evaluated

• otherwise, they'll be treated as literal text that is
the value of the new element

• here again, use commas to separate items

• because we're using text(), there are no newlines
after the name and start time

• we use a string literal to put something between them

Reshaping the Output (cont.)

<course id="C20119" teacher="P123456" room="011">
<name>CS 111</name><start>10:10</start><end>11:00</end>

</course>

<course id="C20268" teacher="P123456">
<name>CS 460</name><start>13:25</start><end>14:15</end>

</course>

<course id="C20757" teacher="P778787" room="789">
<name>CS 112</name><start>11:30</start><end>12:45</end>

</course>

for $c in //course
where $c/start > "11:00"
return <after11-course>

{$c/name/text(), " - ", $c/start/text()}
</after11-course>

• The result will look something like this:
<after11-course>CS 460 - 13:25</after11-course>
<after11-course>CS 112 - 11:30</after11-course>

for vs. let

• Here's an example that illustrates how they differ:

for $d in document("depts.xml")/depts/dept/deptno
let $e := document("emps.xml")/emps/emp[deptno = $d]
where count($e) >= 10
return <big-dept>

{
$d,
<headcount>{count($e)}</headcount>,
<avgsal>{avg($e/salary)}</avgsal>

}

</big-dept>

• the for clause assigns to $d one deptno element at a time

• for each value of $d, the let clause assigns to $e
the full set of emp elements from that department

• the where clause limits us to depts with >= 10 employees

• we create a new element for each such dept.

• we use functions on the set $e and on values derived from it

Nested Queries

• We can nest FLWOR expressions:
• example: group together each instructor's person info.

with the courses taught by him/her
for $p in //person[@teaches]
return <instructor-courses>

{ $p,
for $c in //course
where contains($p/@teaches, $c/@id)
return $c

}
</instructor-courses>

• result:
<instructor-courses>

<person id="P123456" teaches="C20119 C20268">
<name><last>Sullivan</last>…</name>

</person>
<course id="C20119" teacher="P123456">

<name>CS 111</name> …
</course>
…

</instructor-courses>
...

Reformatting the Results of the Previous Query

for $p in //person[@teaches]
return
<instructor>
{<name>{$p/pname/first/text(), " ", $p/pname/last/text()}
</name>,
for $c in //course
where contains($p/@teaches, $c/@id)
return <course>{$c/name/text()}</course>
}
</instructor>

• result:
<instructor>

<name>David Sullivan</name>
<course>CS 111</course>
<course>CS 460</course>
…

</instructor>
…

Implementing an XML DBMS

• Two possible approaches:

1) build it on top of a DBMS that uses another model

• use a logical-to-logical mapping
that can accommodate any XML document

• example: define an XML-to-relational mapping

XML document one or more tuples

2) build it directly on top of a storage engine (or file system!)

• use an appropriate logical-to-physical mapping

• similar to what you did in PS 2, Part II!

Approach 1: Logical-to-Logical Mappings

• Possible XML-to-relational mappings:

1) use a schema that stores an entire XML document
as the value of a single attribute:

document(id, contents)

• useful if you need to preserve the exact bytes of the
original document (ex: for legal purposes)

• may also be useful if you have small documents
that are typically retrieved in their entirety

2) use a schema that encodes the tree structure
of the document

• example: a table for elements that looks something like
element(id, parent_id, name, value)

Approach 2: Logical-to-Physical Mappings

• Option 1: Store each document in a flat file.
• advantages:

• the mapping is very simple!

• there are many tools that allow you to manipulate XML
that is stored in this way

• it makes the data easily readable

• disadvantages?

•

•

• Option 2: make direct use of a traditional storage engine

• get the benefits of a DBMS (indexing, transactions, etc.)
without the overhead of a logical-to-logical mapping

• the logical-to-physical mapping is less straightforward

Distributed Databases
and Replication

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

What Is a Distributed Database?

• One in which data is:

• partitioned / fragmented among multiple machines
and/or

• replicated – copies of the same data are made available
on multiple machines

• It is managed by a distributed DBMS (DDBMS) –
processes on two or more machines that jointly provide
access to a single logical database.

• The machines in question may be:

• at different locations (e.g., different branches of a bank)

• at the same location (e.g., a cluster of machines)

• In the remaining slides, we will use the term site
to mean one of the machines involved in a DDBMS.

• may or may not be at the same location

• A given site may have a local copy of all, part, or none of
a particular database.

• makes requests of other sites as needed

What Is a Distributed Database? (cont.)

DB

network

DB

DB

site 1 site 2

site 3 site 4

Fragmentation / Sharding

• Divides up a database's records among several sites

• the resulting "pieces" are known as fragments/shards

• Let R be a collection of records of the same type (e.g., a relation).

• Horizontal fragmentation divides up the "rows" of R.

• R(a, b, c) R1(a, b, c), R2(a, b, c), …

• R = R1 U R2 U …

• Vertical fragmentation divides up the "columns" of R.

• R(a, b, c) R1(a, b), R2(a, c), … (a is the primary key)

• R = R1 R2 …

cba

cba

cba

cba ba ca

Fragmentation / Sharding (cont.)

• Another version of vertical fragmentation:
divide up the tables (or other collections of records).
• e.g., site 1 gets tables A and B

site 2 gets tables C and D

• Here's a relation from a centralized bank database:

• Here's one way of fragmenting it:

Example of Fragmentation

balancebranchaccount

$11111main111111

$33333main333333

.........

balancebranchaccount

$22222south222222

$70000south444444

.........

balancebranchaccount

$10west123456

$50000west456789

.........

network

citystreetowneraccount

...1 Rich StE. Scrooge111111

...5 Poor LnR. Cratchit123456

............

citystreetowneraccount

...1 Rich StE. Scrooge111111

...5 Poor LnR. Cratchit123456

............

balancebranch

$11111main

$10west

......

main

west south

• Replication involves putting copies of the same collection of
records at different sites.

Replication

network

monthly
fee

interest
rate

account
type

$100%standard

$502%bigsaver

.........

monthly
fee

interest
rate

account
type

$100%standard

$502%bigsaver

.........

monthly
fee

interest
rate

account
type

$100%standard

$502%bigsaver

.........

Reasons for Using a DDBMS

• to improve performance

• how does distribution do this?

• to provide high availability

• replication allows a database to remain available
in the event of a failure at one site

• to allow for modular growth

• add sites as demand increases

• adapt to changes in organizational structure

• to integrate data from two or more existing systems

• without needing to combine them

• allows for the continued use of legacy systems

• gives users a unified view of data maintained by different
organizations

Challenges of Using a DDBMS (partial list)

• determining the best way to distribute the data

• when should we use vertical/horizontal fragmentation?

• what should be replicated, and how many copies do we need?

• determining the best way to execute a query

• need to factor in communication costs

• maintaining integrity constraints (primary key, foreign key, etc.)

• ensuring that copies of replicated data remain consistent

• managing distributed txns: ones that involve data at multiple sites

• atomicity and isolation can be harder to guarantee

Failures in a DDBMS

• In addition to the failures that can occur in a centralized system,
there are additional types of failures for a DDBMS.

• These include:

• the loss or corruption of messages

• TCP/IP handles this type of error

• the failure of a site

• the failure of a communication link

• can often be dealt with by rerouting the messages

• network partition: failures prevent communication
between two subgroups of the sites

Distributed Transactions

• A distributed transaction involves data stored at multiple sites.

• One of the sites serves as the coordinator of the transaction.

• one option: the site on which the txn originated

• The coordinator divides a distributed transaction into
subtransactions, each of which executes on one of the sites.

read balance1
write(balance1 - 500)
read balance2
write(balance2 + 500)

read balance1
write(balance1 - 500)

read balance2
write(balance2 + 500)

subtxn 1

subtxn 2

Types of Replication

• In synchronous replication, transactions are guaranteed to see
the most up-to-date value of an item.

• In asynchronous replication, transactions are not guaranteed
to see the most up-to-date value.

Synchronous Replication I: Read-Any, Write-All

• Read-Any: when reading an item, access any of the replicas.

• Write-All: when writing an item, must update all of the replicas.

• Works well when reads are much more frequent than writes.

• Drawback: writes are very expensive.

Synchronous Replication II: Voting

• When writing, update some fraction of the replicas.

• each value has a version number that is
increased when the value is updated

• When reading, read enough copies to ensure you get
at least one copy of the most recent value (see next slide).

• the copies "vote" on the value of the item

• the copy with the highest version number is the most recent

• Drawback: reads are now more expensive

Synchronous Replication II: Voting (cont.)

• How many copies must be read?
• let: n = the number of copies

w = the number of copies that are written
r = the number of copies that are read

• need: r > n – w (i.e., at least n – w + 1)

• example: n = 6 copies
update w = 3 copies
must read at least 4 copies

• Example: 6 copies of data item A,
each with value = 4, version = 1.

• txn 2 updates A1, A2, and A4 to be 6
(and their version number becomes 2)

• txn 1 reads A2, A3, A5, and A6

• A2 has the highest version number (2),
so its value (6) is the most recent.

A1
6/2

A2
6/2

A4
6/2

A5
4/1

A3
4/1

A6
4/1

Which of these allow us to ensure that
clients always get the most up-to-date value?

• 10 replicas – i.e., 10 copies of each item

• voting-based approach with the following requirements:

number of copies number of copies
accessed when reading accessed when writing

A. 7 3

B. 5 5

C. 9 2

D. 4 8

(select all that work)

Distributed Concurrency Control

• To ensure the isolation of distributed transactions,
need some form of distributed concurrency control.

• Extend the concurrency control schemes that we studied earlier.

• we'll focus on extending strict 2PL

• If we just used strict 2PL at each site, we would ensure
that the schedule of subtxns at each site is serializable.

• why isn't this sufficient?

Distributed Concurrency Control (cont.)

• Example of why special steps are needed:

• voting-based synchronous replication with 6 replicas

• let's say that we configure the voting as before:
• each write updates 3 copies
• each read accesses 4 copies

• can end up with schedules that are not conflict serializable

• example:

T2T1

xl(A4); xl(A5); xl(A6)
w(A4); w(A5); w(A6)

xl(B4); xl(B5); xl(B6)
w(B4); w(B5); w(B6)

xl(A1); xl(A2); xl(A3)
w(A1); w(A2); w(A3)

xl(B1); xl(B2); xl(B3)
w(B1); w(B2); w(B3)

Xi = the copy of item X
at site i

T1 should come before
T2 based on the order in
which they write A.

T1 should come after T2
based on the order in
which they write B.

What Do We Need?

• We need shared and exclusive locks for a logical item,
not just for individual copies of that item.

• referred to as global locks

• doesn't necessarily mean locking every copy

• Requirements for global locks:

• no two txns can hold a global exclusive lock for the same item

• any number of txns can hold a global shared lock for an item

• a txn cannot acquire a global exclusive lock on an item
if another txn holds a global shared lock on that item,
and vice versa

What Do We Need? (cont.)

• In addition, we need to ensure the correct ordering of operations
within each distributed transaction.

• don't want a subtxn to get ahead of where it should be
in the context of the txn as a whole

• relevant even in the absence of replication

• one option: have the coordinator of the txn acquire
the necessary locks before sending operations to a site

Option 1: Centralized Locking

• One site manages the lock requests for all items in the
distributed database.

• even items that don't have copies stored at that site

• since there's only one place to acquire locks,
these locks are obviously global locks!

• Problems with this approach?

• the lock site can become a bottleneck

• if the lock site crashes, operations at all sites are blocked

Option 2: Primary-Copy Locking

• One copy of an item is designated the primary copy.

• The site holding the primary copy handles all lock requests
for that item.

• acquiring a shared lock for the primary copy
gives you a global shared lock for the item

• acquiring an exclusive lock for the primary copy
gives you a global exclusive lock for the item

• To prevent one site from becoming a bottleneck,
distribute the primary copies among the sites.

• Problem: If a site goes down, operations are blocked
on all items for which it holds the primary copy.

Option 3: Fully Distributed Locking

• No one site is responsible for managing lock requests
for a given item.

• A transaction acquires a global lock for an item
by locking a sufficient number of the item's copies.

• these local locks combine to form the global lock

• To acquire a global shared lock, acquire local shared locks
for a sufficient number of copies (see next slide).

• To acquire a global exclusive lock, acquire local exclusive locks
for a sufficient number of copies (see next slide).

Option 3: Fully Distributed Locking (cont.)

• How many copies must be locked?
• let: n = the total number of copies

x = the number of copies that must be locked to
acquire a global exclusive lock

s = the number of copies that must be locked to
acquire a global shared lock

• we need x > n/2

• guarantees that no two txns can both acquire
a global exclusive lock at the same time

• we need s > n – x (i.e., s + x > n)

• if there's a global exclusive lock on an item,
there aren't enough unlocked copies for a global shared lock

• if there's a global shared lock on an item,
there aren't enough unlocked copies for a global excl. lock

Option 3: Fully Distributed Locking (cont.)

• Our earlier example would no longer be possible:

T2T1

xl(A4); xl(A5); xl(A6)
w(A4); w(A5); w(A6)

xl(B4); xl(B5); xl(B6)
w(B4); w(B5); w(B6)

xl(A1); xl(A2); xl(A3)
w(A1); w(A2); w(A3)

xl(B1); xl(B2); xl(B3)
w(B1); w(B2); w(B3)

T2T1

xl(A4); xl(A5);
xl(A6) – denied
must wait for T1

xl(A1); xl(A2); xl(A3);
xl(A6)
w(A1); w(A2); w(A3);
w(A6)

• n = 6
• need x > 6/2
• must acquire at least

4 local exclusive locks
before writing

Synchronous Replication and Fully Distributed Locking

• Read-any write-all:

• when writing an item, a txn must update all of the replicas

• this gives it x = n exclusive locks, so x > n/2

• when reading an item, a txn can access any of the replicas

• this gives it s = 1 shared lock, and 1 > n – n

• Voting:

• when writing, a txn updates a majority of the copies –
i.e., w copies, where w > n/2.

• this gives it x > n/2 exclusive locks as required

• when reading, a txn reads r > n – w copies
• this gives it s > n – x shared locks as required

Which of these would work?

• 9 replicas – i.e., 9 copies of each item

• fully distributed locking

• voting-based approach with the following requirements:

number of copies
read written

A. 5 5

B. 6 4

C. 7 3

D. 4 5

(select all that work)

Which of these would work?

• 9 replicas – i.e., 9 copies of each item

• primary-copy locking

• voting-based approach with the following requirements:

number of copies
read written

A. 5 5

B. 6 4

C. 7 3

D. 4 5

(select all that work)

Distributed Deadlock Handling

• Under centralized locking, we can just use one of the schemes
that we studied earlier in the semester.

• Under the other two locking schemes, deadlock detection
becomes more difficult.

• local waits-for graphs alone will not necessarily detect a
deadlock

• example:

site 1: site 2:

• one option: periodically send local waits-for graphs
to one site that checks for deadlocks

• Instead of using deadlock detection, it's often easier to use
a timeout-based scheme.

• if a txn waits too long, presume deadlock and roll it back!

T1 T2 T1 T2

Recall: Types of Replication

• In synchronous replication, transactions are guaranteed to see
the most up-to-date value of an item.

• In asynchronous replication, transactions are not guaranteed
to see the most up-to-date value.

Asynchronous Replication I: Primary Site

• In primary-site replication, one replica is designated the
primary or master replica.

• All writes go to the primary.

• propagated asynchronously to the other replicas
(the secondaries)

• The secondaries can only be read.

• no locks are acquired when accessing them

• thus, we only use them when performing read-only txns

• Drawbacks of this approach?

Asynchronous Replication II: Peer-to-Peer

• In peer-to-peer replication, more than one replica can be updated.

• Problem: need to somehow resolve conflicting updates!

Processing Distributed Data
Using MapReduce

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

MapReduce

• A framework for computation on large data sets that are
fragmented and replicated across a cluster of machines.

• spreads the computation across the machines,
letting them work in parallel

• tries to minimize the amount of data that is
transferred between machines

• The original version was Google's MapReduce system.

• An open-source version is part of the Hadoop project.

• we'll use it as part of PS 4

Sample Problem: Totalling Customer Orders

• Acme Widgets is a company that sells only one type of product.

• Data set: a large collection of records about customer orders

• fragmented and replicated across a cluster of machines

• sample record:
('U123', 500, '03/22/17', 'active')

customer id amount ordered date ordered order status

• Desired computation: For each customer, compute
the total amount in that customer's active orders.

• Inefficient approach: Ship all of the data to one machine
and compute the totals there.

Sample Problem: Totalling Customer Orders (cont.)

• MapReduce does better using "divide-and-conquer" approach.

• splits the collection of records into subcollections
that are processed in parallel

• For each subcollection, a mapper task maps the records to
smaller key-value pairs – in this case, (cust_id, amount active).
('U123', 500, '03/22/17', 'active') ('U123', 500)
('U456', 50, '02/10/17', 'done') ('U456', 0)
('U123', 150, '03/23/17', 'active') ('U123', 150)
('U456', 75, '03/28/17', 'active') ('U456', 75)

• These smaller pairs are distributed by cust_id to other tasks
that again work in parallel.

• These reducer tasks combine the pairs for a given cust_id
to compute the per-customer totals:
('U123', 500) ('U456', 0)
('U123', 150) ('U456', 75)

('U123', 650) ('U456', 75)

Benefits of MapReduce

• Parallel processing reduces overall computation time.

• Less data is sent between machines.

• the mappers often operate on local data

• the key-value pairs sent to the reducers are
smaller than the original records

• an initial reduction can sometimes be done locally

• example: compute local subtotals for each customer,
then send those subtotals to the reducers

• It provides fault tolerance.

• if a given task fails or is too slow, re-execute it

• The framework handles all of the hard/messy parts.

• The user can just focus on the problem being solved!

MapReduce In General: Mapping

• The system divides up the collection of input records,
and assigns each subcollection Si to a mapper task Mj.

• The mappers apply a map function to each record:

map(k, v): # treat record as a key-value pair
emit 0 or more new key-value pairs (k', v')

• the resulting keys and values (the intermediate results)
can have different types than the original ones

• the input and intermediate keys do not have to be unique

S0

S1

S2

S3

S4

M0

M1

M2

MapReduce In General: Reducing

• The system partitions the intermediate results by key,
and assigns each range of keys to a reducer task Rk.

• Key-value pairs with the same key are grouped together:
(k', v'0), (k', v'1), (k', v'2) (k', [v'0, v'1, v'2, ...])

• so that all values for a given key are processed together

• The reducers apply a reduce function to each (key, value-list):

reduce(k', [v'0, v'1, v'2, ...]):
emit 0 or more key-value pairs (k", v")

• the types of the (k", v") can be different from the (k', v')

S0

S1

S2

S3

S4

M0

M1

M2

R0

R1

R2

MapReduce In General: Combining (Optional)

• In some cases, the intermediate results can be aggregated
locally using combiner tasks Cn.

• Often, the combiners use the same reduce function
as the reducers.

• produces partial results that can then be combined

• This cuts down on the data transferred to the reducers.

S0

S1

S2

S3

S4

M0

M1

M2

R0

R1

R2

C0

C1

C2

Hadoop MapReduce Framework

• Implemented in Java

• It also includes other, non-Java options for writing
MapReduce applications.

• In PS 4, you'll write simple MapReduce applications in Java.

• To do so, you need to become familiar with some key
classes from the MapReduce API.

• We'll also review some relevant Java concepts.

Classes and Interfaces for Keys and Values

• Found in the org.apache.hadoop.io package

• Types used for values must implement the Writable interface.

• includes methods for efficiently serializing/writing the value

• Types used for keys must implement WritableComparable.
• in addition to the Writeable methods, must also have

a compareTo() method that allows values to be compared

• needed to sort the keys and create key subranges

• The following classes implement both interfaces:

• IntWritable – for 4-byte integers

• LongWritable – for long integers

• DoubleWritable – for floating-point numbers

• Text – for strings/text (encoded using UTF8)

Recall: Generic Classes
public class ArrayList<T> {

private T[] items;
…
public boolean add(T item) {

…
}
…

}

• The header of a generic class includes one or more
type variables.

• in the above example: the variable T

• The type variables serve as placeholders for actual data types.

• They can be used as the types of:

• fields

• method parameters

• method return types

Recall: Generic Classes (cont.)

public class ArrayList<T> {
private T[] items;
…
public boolean add(T item) {

…
}
…

}

• When we create an instance of a generic class, we specify
types for the type variables:

ArrayList<Integer> vals = new ArrayList<Integer>();

• vals will have an items field of type Integer[]

• vals will have an add method that takes an Integer

• We can also do this when we create a subclass of a generic class:

public class IntList extends ArrayList<Integer> {

...

Mapper Class
public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>

• the principal method:
void map(KEYIN key, VALUEIN value, Context context)

• To implement a mapper:

• extend this class with appropriate replacements
for the type variables; for example:
class MyMapper

extends Mapper<Object, Text, Text, IntWritable>

• override map()

type variables
for the (key, value)
pairs given to the
mapper

type variables
for the (key, value)
pairs produced by
the mapper

Reducer Class
public class Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT>

• the principal method:
void reduce(KEYIN key, Iterable<VALUEIN> values,

Context context)

• To implement a reducer:

• extend this class with appropriate replacements
for the type variables

• override reduce()

type variables
for the (key, value)
pairs given to the
reducer

type variables
for the (key, value)
pairs produced by
the reducer

Context Objects

• Both map() and reduce() are passed a Context object:
void map(KEYIN key, VALUEIN value, Context context)

void reduce(KEYIN key, Iterable<VALUEIN> values,
Context context)

• Allows Mappers and Reducers to communicate with the
MapReduce framework.

• Includes a write() method used to output (key, value) pairs:

void write(KEYOUT key, VALUEOUT value)

Example

class MyMapper extends Mapper<Object, Text,
LongWriteable, IntWritable>

Which of these is the correct header for the map method?

A. void map(LongWriteable key, IntWritable value,
Context context)

B. void map(Text key, LongWriteable value,
Context context)

C. void map(Object key, IntWriteable value,
Context context)

D. void map(Object key, Text value, Context context)

Example 1: Birth-Month Counter

• The data: text file(s) containing person records that look like this

id,name,dob,email

where dob is in the form yyyy-mm-dd

• The problem: Find the number of people born in each month.

Example 1: Birth-Month Counter (cont.)

• map should:

• extract the month from the person's dob

• emit a single key-value pair of the form (month string, 1)

111,Alan Turing,1912-06-23,al@aol.com ("06", 1)
234,Grace Hopper,1906-12-09,gmh@harvard.edu ("12", 1)
444,Ada Lovelace,1815-12-10,ada@1800s.org ("12", 1)
567,Howard Aiken,1900-03-08,aiken@harvard.edu ("03", 1)
777,Joan Clarke,1917-06-24,joan@bletchley.org ("06", 1)
999,J. von Neumann,1903-12-28,jvn@princeton.edu ("12", 1)

• The intermediate results are distributed by key to the reducers.

• reduce should:

• add up the 1s for a given month

• emit a single key-value pair of the form (month string, total)
("06", [1, 1]) ("06", 2)
("12", [1, 1, 1]) ("12", 3)
("03", [1]) ("03", 1)

Mapper for Example 1

public class BirthMonthCounter {

public static class MyMapper
extends Mapper<Object, Text, Text, IntWritable>

• For data obtained from text files, the Mapper's inputs
will be key-values pairs in which:

• value = a single line from one of the files (a Text value)

• key = the location of the line in the file (a LongWritable)

• however, we use the Object type for the key
because we ignore it, and thus we don't need any
LongWritable methods

• The map method will output pairs in which:

• key = a month string (use Text for it)

• value = 1 (use IntWritable)

Mapper for Example 1 (cont.)

public class BirthMonthCounter {

public static class MyMapper
extends Mapper<Object, Text, Text, IntWritable>

{
public void map(Object key, Text value,

Context context)
{

String record = value.toString();
// code to extract month string goes here
context.write(new Text(month),

new IntWritable(1));
}

}
...

}

Splitting a String

• The String class includes a method named split().

• breaks a string into component strings

• takes a parameter indicating what delimiter should be
used when performing the split

• returns a String array containing the components

• Example:
String sentence = "How now brown cow?";
String[] words = sentence.split(" ");
System.out.println(words[0]);
System.out.println(words[3]);
System.out.println(words.length);

would output:

Processing an Input Record in map
void map(Object key, Text value, Context context)

• Recall: value is a Text object representing one record.

• for Example 1, it looks like:

111,Alan Turing,1912-06-23,al@aol.com

• To extract the month string:

• use the toString() method to convert Text to String:

String line = value.toString();

• split line on the commas to get the fields:

String[] fields = line.split(",");

• similarly, split the date field on the hyphens to get its
components

• could we just split line on the hyphens?

Reducer for Example 1
public static class MyMapper

extends Mapper<Object, Text, Text, IntWritable>
{

...

}

public static class MyReducer
extends Reducer<Text, IntWritable,

Text, LongWritable>
{

public void reduce(Text key,
Iterable<IntWritable> values, Context context)

{
// code to add up the list of 1s goes here
context.write(key, new LongWritable(total));

}
...

• Use LongWritable to avoid overflow with large totals.

Processing the List of Values in reduce
void reduce(Text key, Iterable<IntWritable> values,

Context context)

• Use a for-each loop. In this case:

for (IntWritable val : values)

• More generally, if values is of type Iterable<T> :
for (T val : values)

• To extract the underlying value from most Writable objects,
use the get() method:

int count = val.get(); // val is IntWritable

• However, Text doesn't have a get() method.

• use toString() instead (see earlier notes)

Reducer for Birth-Month Counter
public class BirthMonthCounter {
...
public static class MyReducer

extends Reducer<Text, IntWritable,
Text, LongWritable>

{
public void reduce(Text key,

Iterable<IntWritable> values, Context context)
{

long total = 0;
for (IntWritable val : values) {

total += val.get()
}

context.write(key, new LongWritable(total));
}
...

• Use long and LongWritable to avoid overflow.

Job Objects

• We use a Job object to:

• provide information about our MapReduce job, such as:

• the name of the Mapper class

• the name of the Reducer class

• the types of values produced by the job

• the format of the input to the job

• execute the job

• We'll give you a template for the necessary method calls.

Configuring and Running the Job
public class BirthMonthCounter {

public static class MyMapper extends... {
...

public static class MyReducer extends... {
...

public static void main(String args)
throws Exception {

// code to configure and run the job
}

}

Configuring and Running the Job
public static void main(String[] args)
throws Exception {

Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "birth month");
job.setJarByClass(BirthMonthCounter.class);

job.setMapperClass(MyMapper.class);
job.setReducerClass(MyReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);

// type for mapper's output value,
// because its not the same as the reducer's
job.setMapOutputValueClass(IntWritable.class);

job.setInputFormatClass(TextInputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);

}
}

Example 2: Month with the Most Birthdays

• The data: same as Example 1. Records of the form

id,name,dob,email

where dob is in the form yyyy-mm-dd

• The problem: Find the month with the most birthdays.

Example 2: Month with the Most Birthdays (cont.)

• map should behave as before:

111,Alan Turing,1912-06-23,al@aol.com ("06", 1)
234,Grace Hopper,1906-12-09,gmh@harvard.edu ("12", 1)
444,Ada Lovelace,1815-12-10,ada@1800s.org ("12", 1)

• reduce needs to:

• add up the 1s for a given month
("06", [1, 1]) ("06", 2)
("12", [1, 1, 1]) ("12", 3)
("03", [1]) ("03", 1)

• determine which month has the largest total

• but...

• there can be multiple reducer tasks, each of which
handles one subset of the months

• each reducer can only determine the largest month
in its subset

• the solution: a chain of two MapReduce jobs

Example 2: Chaining Jobs

• First job = count birth months as we did in Example 1

• map1: person record (birth month, 1)

• reduce1: (birth month, [1, 1, ...]) (birth month, total)

• The second job processes the results of the first job!

• map2: (birth month, total) (c, (birth month, total))

• output key c = an arbitrary constant, used for all k-v pairs

• output value = a pairing of a birth month and its total
("06", 2) ("month sum", "06,2")
("12", 3) ("month sum", "12,3")
("03", 1) ("month sum", "03,1")

• because there is only one output key,
there is only one reducer task!

• reduce2: find the month with the most birthdays

("month sum", ["06,2", "12,3", "03,1"]) ("12", 3)

Example 2: Chaining Jobs (cont.)

public class MostBirthdaysMonth {

public static class MyMapper1 extends... {
...

}

public static class MyReducer1 extends... {
...

}

public static class MyMapper2 extends... {
...

}

public static class MyReducer2 extends... {
...

}

public static void main(String[] args) throws... {
...

}

Configuring and Running a Chain of Jobs
public static void main(String args)
throws Exception {

Configuration conf = new Configuration();
Job job1 = Job.getInstance(conf, "birth month");
job1.setJarByClass(MostBirthdaysMonth.class);
job1.setMapperClass(MyMapper1.class);
job1.setReducerClass(MyReducer1.class);
...
FileInputFormat.addInputPath(job1, new Path(args[0]));
FileOutputFormat.setOutputPath(job1, new Path(args[1]));
job1.waitForCompletion(true);

Job job2 = Job.getInstance(conf, "max month");
job2.setJarByClass(MostBirthdaysMonth.class);
job2.setMapperClass(MyMapper2.class);
job2.setReducerClass(MyReducer2.class);
...
FileInputFormat.addInputPath(job2, new Path(args[1]));
FileOutputFormat.setOutputPath(job2, new Path(args[2]));
job2.waitForCompletion(true);

}

Structure of the Java Files

• In theory, we could use multiple Java files for each problem:

• one file for the program as a whole

• one file for the Mapper class, one for the Reducer class, etc.

• Instead, we'll put all of the classes in the same file by
using static nested classes:

public class MyProblem {
public static class MyMapper extends ... {

...

}
public static class MyReducer extends ... {

...

}

• Unlike an inner class (aka a non-static nested class),
static nested classes do not depend on their outer class.

• they are equivalent to an outer class from another file

• allows the MapReduce system to instantiate them

NoSQL Databases

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

The Rise of NoSQL

• Beginning in the early 2000s, web-based applications
increasingly needed to deal with massive amounts of:

• data

• traffic / queries

• Scalability is crucial.

• load can increase rapidly and unpredictably

• Large servers are expensive and can only grow so large.

• Solution: use clusters of small commodity machines

• use both fragmentation/sharding and replication

• cheaper

• greater overall reliability

• can take advantage of cloud-based storage

The Rise of NoSQL (cont.)

• Problem: Relational DBMSs do not scale well to large clusters.

• Google and Amazon each developed their own alternative
approaches to data management on clusters.

• Google: BigTable

• Amazon: DynamoDB

• The papers that Google and Amazon published about their
efforts got others interested in developing similar DBMSs.

 noSQL

What Does NoSQL Mean?

• Not well defined.

• Typical characteristics of NoSQL DBMSs:

• don't use SQL / the relational model

• open-source

• designed for use on clusters

• support for sharding/fragmentation and replication

• schema-less or flexible schema

• One good overview:

Sadalage and Fowler, NoSQL Distilled
(Addison-Wesley, 2013).

Flavors of NoSQL

• Various taxonomies have been proposed

• Three of the main classes of NoSQL databases are:

• key-value stores

• document databases

• column-family (aka big-table) stores

• Some people also include graph databases.

• very different than the others

• example: they are not designed for clusters

Key-Value Stores

• We've already worked with one of these: Berkeley DB

• Simple data model: key/value pairs

• the DBMS does not attempt to interpret the value

• Queries are limited to query by key.

• get/put/update/delete a key/value pair

• iterate over key/value pairs

Document Databases

• Also store key/value pairs

• Unlike key-value stores, the value is not opaque.

• it is a document containing semistructured data

• it can be examined and used by the DBMS

• Queries:

• can be based on the key (as in key/value stores)

• more often, are based on the contents of the document

• Here again, there is support for sharding and replication.

• the sharding can be based on values within the document

Column-Family Databases

• Google's BigTable and systems based on it

• To understand the motivation behind their design,
consider one type of problem BigTable was designed to solve:

• You want to store info about web pages!

• For each URL, you want to store:

• its contents

• its language

• for each other page that links to it, the anchor text
associated with the link (i.e., the text that you click on)

Storing Web-Page Data in a Traditional Table

• One row per web page

• Single columns for its language and contents

• One column for the anchor text from each possible page,
since in theory any page could link to any other page!

• Leads to a huge sparse table – most cells are empty/unused.

one col per pageanchor from
www.bu.edu

anchor text from
www.cnn.com

contentslanguagepage URL

…<html>…Englishwww.cnn.com

…<html>…Englishwww.bu.edu

…"news story"<html>…Englishwww.nytimes.com

…"French elections"<html>…Frenchwww.lemonde.fr

……
…

Storing Web-Page Data in BigTable

• Rather than defining all possible columns, define a set of
column families that each row should have.

• example: a column family called anchor that replaces
all of the separate anchor columns on the last slide

• can also have column families that are like typical columns

• In a given row, only store columns with an actual value,
representing them as (column key, value) pairs

• column key = column family:qualifier

• ex: ("anchor:www.bu.edu", "news story")

column key

column
family

qualifier value

Data Model for Column-Family Databases

• Different rows can have different schema.

• i.e., different sets of column keys

• (column key, value) pairs can be added or removed
from a given row over time

• The set of column families in a given table rarely change.

Advantages of Column Families

• Gives an additional unit of data, beyond just a single row.

• Can be used for access controls.

• restrict an application to only certain column families

• Column families can be divided up into locality groups that are
stored together.

• based on which column families are typically accessed
together

• advantage?

Aggregate Orientation

• Key-value, document, and column-family stores all lend
themselves to an aggregate-oriented approach.

• group together data that "belongs" together

• i.e., that will tend to be accessed together

• Relational databases can't fully support aggregation.

• no multi-valued attributes; focus on avoiding duplicated data

• give each type of entity its own table, rather than grouping
together entities/attributes that are accessed together

unit of aggregationtype of database

the value part of the key/value pairkey-value store

a documentdocument database

a row
(plus column-family sub-aggregates)

column-family store

Aggregate Orientation (cont.)

• Example: data about customers

• RDBMS: store a customer's address in only one table

• use foreign keys in other tables that refer to the address

• aggregate-oriented system: store the full customer address
in several places:

• customer aggregates

• order aggregates

• etc.

• Benefits of an aggregate-based approach in a NoSQL store:

• provides a unit for sharding across the cluster

• allows us to get related data without needing to access
many different nodes

Schemalessness

• NoSQL systems are completely or mostly schemaless.

• Key-value stores: put whatever you like in the value

• Document databases: no restrictions on the schema used by
the semistructured data inside each document.

• although some do allow a schema, as with XML

• Column-family databases:

• we do specify the column families in a given table

• but no restrictions on the columns in a given column family
and different rows can have different columns

Schemalessness (cont.)

• Advantages:

• allows the types of data that are stored to evolve over time

• makes it easier to handle nonuniform data

• e.g., sparse tables

• Despite the fact that a schema is not required,
programs that use the data need at least an implicit schema.

• Disadvantages of an implicit schema:

• the DBMS can't enforce it

• the DBMS can't use it to try to make accesses more efficient

• different programs that access the same database
can have conflicting notions of the schema

Example Document Database: MongoDB

• Mongo (from humongous)

• Key features include:

• replication for high availability

• auto-sharding for scalability

• documents are expressed using JSON/BSON

• queries can be based on the contents of the documents

• Related documents are grouped together into collections.

• what does this remind you of?

JSON

• JSON is an alternative data model for semistructured data.

• JavaScript Object Notation

• Built on two key structures:

• an object, which is a sequence of fields (name:value pairs)

{ id: "1000",
name: "Sanders Theatre",
capacity: 1000 }

• an array of values

["123-456-7890", "222-222-2222", "333-333-3333"]

• A value can be:

• an atomic value: string, number, true, false, null

• an object

• an array

Example: JSON Object for a Person

{ firstName: "John",
lastName: "Smith",
age: 25,
address: {

streetAddress: "21 2nd Street",
city: "New York",
state: "NY",
postalCode: "10021"

},
phoneNumbers: [

{ type: "home",
number: "212-555-1234"

},
{ type: "mobile",

number: "646-555-4567"
}

]
}

BSON

• MongoDB actually uses BSON.

• a binary representation of JSON

• BSON = marshalled JSON!

• BSON includes some additional types that are not part of JSON.

• in particular, a type called ObjectID for unique id values.

• Each MongoDB document is a BSON object.

The _id Field

• Every MongoDB document must have an _id field.

• its value must be unique within the collection

• acts as the primary key of the collection

• it is the key in the key/value pair

• If you create a document without an _id field:

• MongoDB adds the field for you

• assigns it a unique BSON ObjectID

MongoDB Terminology

• Documents in a given collection typically have a similar purpose.

• However, no schema is enforced.

• different documents in the same collection
can have different fields

MongoDB equivalentrelational term

databasedatabase

collectiontable

documentrow

fields (name:value pairs)attributes

the _id field, which is the key
associated with the document

primary key

Data Modeling in MongoDB

• Need to determine how to map

entities and relationships collections of documents

• Could in theory give each type of entity:

• its own (flexibly formatted) type of document

• those documents would be stored in the same collection

• However, recall that NoSQL models allow for aggregates
in which different types of entities are grouped together.

• Determining what the aggregates should look like
involves deciding how we want to represent relationships.

Capturing Relationships in MongoDB

• Two options:

1. store references to other documents using their _id values

source: docs.mongodb.org/manual/core/ data-model-design

• where have we seen this before?

Capturing Relationships in MongoDB (cont.)

• Two options (cont.):

2. embed documents within other documents

source: docs.mongodb.org/manual/core/ data-model-design

• where have we seen this before?

Factors Relevant to Data Modeling

• A given MongoDB query can only access a single collection.

• joins of documents are not supported

• need to issue multiple requests

 group together data that would otherwise need to be joined

• Atomicity is only provided for operations on a single document
(and its embedded subdocuments).

 group together data that needs to be updated as part of
single logical operation (e.g., a balance transfer!)

 group together data items A and B if A's current value
affects whether/how you update B

Factors Relevant to Data Modeling (cont.)

• If an update makes a document bigger than the space
allocated for it on disk, it may need to be relocated.

• slows down the update, and can cause disk fragmentation

• MongoDB adds padding to documents to reduce the
need for relocation

 use references if embedded documents could lead to
significant growth in the size of the document over time

Factors Relevant to Data Modeling

• Pluses and minuses of embedding (a partial list):

+ need to make fewer requests for a given logical operation

+ less network/disk I/O

+ enables atomic updates

– duplication of data

– possibility for inconsistencies between different copies
of duplicated data

– can lead documents to become very large,
and to document relocation

• Pluses and minuses of using references:

• take the opposite of the pluses and minuses of the above!

+ allow you to capture more complicated relationships

• ones that would be modelled using graphs

Data Model for the Movie Database

• Recall our movie database from PS 1.
Person(id, name, dob, pob)
Movie(id, name, year, rating, runtime, genre, earnings_rank)
Oscar(movie_id, person_id, type, year)
Actor(actor_id, movie_id)
Director(director_id, movie_id)

• Three types of entities: movies, people, oscars

• Need to decide how we should capture the relationships

• between movies and actors

• between movies and directors

• between Oscars and the associated people and movies

Data Model for the Movie Database (cont.)

• Assumptions about the relationships:

• there are only one or two directors per movie

• there are approx. five actors associated with each movie

• the number of people associated with a given movie is fixed

• each Oscar has exactly one associated movie
and at most one associated person

• Assumptions about the queries:

• Queries that involve both movies and people usually involve
only the names of the people, not their other info.

common: Who directed Avatar?
common: Which movies did Tom Hanks act in?
less common: Which movies have actors from Boston?

• Queries that involve both Oscars and other entities usually
involve only the name(s) of the person/movie.

Data Model for the Movie Database (cont.)

• Given our assumptions, we can take a hybrid approach
that includes both references and embedding.

• Use three collections: movies, people, oscars

• Use references as follows:

• in movie documents, include ids of the actors and directors

• in oscar documents, include ids of the person and movie

• Whenever we refer to a person or movie, we also
embed the associated entity's name.

• allows us to satisfy common queries like Who acted in…?

• For less common queries that involve info. from multiple
entities, use the references.

Data Model for the Movie Database (cont.)

• In addition, add two boolean fields to person documents:

• hasActed, hasDirected

• only include when true

• allows us to find all actors/directors that meet criteria
involving their pob/dob

• Note that most per-entity state appears only once,
in the main document for that entity.

• The only duplication is of people/movie names and ids.

Sample Movie Document

{ _id: "0499549",
name: "Avatar",
year: 2009,
rating: "PG-13",
runtime: 162,
genre: "AVYS",
earnings_rank: 1,
actors: [{ id: "0000244",

name: "Sigourney Weaver" },
{ id: "0002332",

name: "Stephen Lang" },
{ id: "0735442",

name: "Michelle Rodriguez" },
{ id: "0757855",

name: "Zoe Saldana" },
{ id: "0941777",

name: "Sam Worthington" }],
directors: [{ id: "0000116",

name: "James Cameron" }] }

Sample Person and Oscar Documents

{ _id: "0000059",
name: "Laurence Olivier",
dob: "1907-5-22",
pob: "Dorking, Surrey, England, UK",
hasActed: true,
hasDirected: true

}

{ _id: ObjectId("528bf38ce6d3df97b49a0569"),
year: 2013,
type: "BEST-ACTOR",
person: { id: "0000358",

name: "Daniel Day-Lewis" },
movie: { id: "0443272",

name: "Lincoln" }
}

Queries in MongoDB

• Each query can only access a single collection of documents.

• Use a method called db.collection.find()

db.collection.find(<selection>, <projection>)

• collection is the name of the collection

• <selection> is an optional document that specifies
one or more selection criteria

• omitting it (i.e., using an empty document {})
selects all documents in the collection

• <projection> is an optional document that specifies
which fields should be returned

• omitting it gets all fields in the document

• Example: find the names of all R-rated movies:

db.movies.find({ rating: "R" }, { name: 1 })

Comparison with SQL

• Example: find the names and runtimes of all R-rated movies
that were released in 2000.

• SQL:

SELECT name, runtime
FROM Movie
WHERE rating = 'R' and year = 2000;

• MongoDB:

db.movies.find({ rating: "R", year: 2000 },
{ name: 1, runtime: 1 })

Query Selection Criteria

db.collection.find(<selection>, <projection>)

• To find documents that match a set of field values,
use a selection document consisting of those name/value pairs
(see previous example).

• Operators for other types of comparisons:

MongoDB SQL equivalent
$gt, $gte >, >=
$lt, $lte <, <=
$ne !=

• Example: find all movies with an earnings rank <= 200

db.movies.find({ earnings_rank: { $lte: 200 }})

• Note that the operator is the field name of a subdocument.

Query Selection Criteria (cont.)

• Logical operators: $and, $or, $not, $nor

• take an array of selection subdocuments

• example: find all movies rated R or PG-13:

db.movies.find({ $or: [{ rating: "R" },
{ rating: "PG-13" }

]
})

• example: find all movies except those rated R or PG-13 :

db.movies.find({ $nor: [{ rating: "R" },
{ rating: "PG-13" }

]
})

Query Selection Criteria (cont.)

• To test for set-membership or lack thereof: $in, $nin

• example: find all movies rated R or PG-13:

db.movies.find({ rating: { $in: ["R", "PG-13"] }
})

• example: find all movies except those rated R or PG-13 :

db.movies.find({ rating: { $nin: ["R", "PG-13"] }
})

• note: $in/$nin is generally more efficient than $or/$nor

• To test for the presence/absence of a field: $exists

• example: find all movies with an earnings rank:

db.movies.find({ earnings_rank: { $exists: true }})

• example: find all movies without an earnings rank:

db.movies.find({ earnings_rank: { $exists: false }})

Logical AND

• You get an implicit logical AND by simply specifying a list
of fields.

• recall our previous example:

db.movies.find({ rating: "R", year: 2000 })

• example: find all R-rated movies shorter than 90 minutes:

db.movies.find({ rating: "R",
runtime: { $lt: 90 }

})

Logical AND (cont.)

• $and is needed if the subconditions involve the same field

• can't have duplicate field names in a given document

• Example: find all Oscars given in the 1990s.

• the following would not work:

db.oscars.find({ year: { $gte: 1990 },
year: { $lte: 1999 }

})

• one option that would work:

db.oscars.find({ $and: [{ year: { $gte: 1990 } },
{ year: { $lte: 1999 } }]

})

• another option: use an implicit AND on the operator subdocs:

db.oscars.find({ year: { $gte: 1990, $lte: 1999 }
})

Pattern Matching

• Use a regular expression surrounded with //

• example: find all people born in Boston

db.people.find({ pob: /*Boston,*/ })

• * is a wildcard character that acts like % in SQL

• We get a * by default on either end of the expression,
so we can do this instead:

db.people.find({ pob: /Boston,/ })

• To override the default * characters, use:
^ to require a match with the beginning of the value
$ to require a match with the end of the value

• /Boston,/ would match "South Boston, Mass"

• /^Boston,/ would not, because the ^ indicates "Boston"
must be at the start of the value

• /USA$/ requires "USA" to be at the end of the value

Query Practice Problem

• Recall our sample person document:

{ _id: "0000059",
name: "Laurence Olivier",
dob: "1907-5-22",
pob: "Dorking, Surrey, England, UK",
hasActed: true,
hasDirected: true

}

• How could we find all directors born in the UK? (Select all that
apply.)

A. db.people.find({ pob: /UK$/, hasDirected: true })

B. db.people.find({ pob: /UK$/,

hasDirected: { $exists: true }})

C. db.people.find({ pob: /UK/,

hasDirected: { $exists: true }})

D. db.people.find({ $pob: /UK/, $hasDirected: true })

Queries on Arrays/Subdocuments

• If a field has an array type

db.collection.find({ arrayField: val })

finds all documents in which val is at least one of the elements
in the array associated with arrayField

• Example: suppose that we stored a movie's genres as an array:

{ _id: "0317219", name: "Cars", year: 2006,
rating: "G", runtime: 124, earnings_rank: 80,

genre: ["N", "C", "F"], ...}

• to find all animated movies – ones with a genre of "N":

db.movies.find({ genre: "N"})

• Given that we actually store the genres as a single string
(e.g., "NCF"), how would we find animated movies?

Queries on Arrays/Subdocuments (cont.)

• Use dot notation to access fields within a subdocument,
or within an array of subdocuments:

• example: find all Oscars won by the movie Gladiator:

> db.oscars.find({ "movie.name": "Gladiator" })

{ _id: <ObjectID1>, year: 2001,
type: "BEST-PICTURE",
movie: { id: "0172495",

name: "Gladiator" }}
{ _id: <ObjectID2>, year: 2001,

type: "BEST-ACTOR",
movie: { id: "0172495",

name: "Gladiator" },
person: { id: "0000128",

name: "Russell Crowe" }}

• Note: When using dot notation, the field name must be
surrounded by quotes.

Queries on Arrays/Subdocuments (cont.)

• example: find all movies in which Tom Hanks has acted:

> db.movies.find({ "actors.name": "Tom Hanks"})

{ _id: "0107818", name: "Philadelphia", year: 1993,
rating: "PG-13", runtime: 125, genre: "D"
actors: [{ id: "0000158",

name: "Tom Hanks" },
{ id: "0000243",

name: "Denzel Washington" },
...

],
directors: [{ id: "0001129",

name: "Jonathan Demme" }]
}
{ _id: "0109830", name: "Forrest Gump", year: 1994,

rating: "PG-13", runtime: 142, genre: "CD"
actors: [{ id: "0000158",

name: "Tom Hanks" },
...

Projections

db.collection.find(<selection>, <projection>)

• The projection document is a list of fieldname:value pairs:

• a value of 1 indicates the field should be included

• a value of 0 indicates the field should be excluded

• Recall our previous example:

db.movies.find({ rating: "R", year: 2000 },

{ name: 1, runtime: 1 })

• Example: find all info. about R-rated movies except their genres:

db.movies.find({ rating: "R" }, { genre: 0 })

Projections (cont.)

• The _id field is returned unless you explicitly exclude it.

> db.movies.find({ rating: "R", year: 2011 },
{ name: 1 })

{ "_id" : "1411697", "name" : "The Hangover Part II" }
{ "_id" : "1478338", "name" : "Bridesmaids" }
{ "_id" : "1532503", "name" : "Beginners" }

> db.movies.find({ rating: "R", year: 2011 },
{ name: 1, _id: 0 })

{ "name" : "The Hangover Part II" }
{ "name" : "Bridesmaids" }
{ "name" : "Beginners" }

• A given projection should either have:

• all values of 1: specifying the fields to include

• all values of 0: specifying the fields to exclude

• one exception: specify fields to include, and exclude _id

Iterating Over the Results of a Query

• db.collection.find() returns a cursor that can be used
to iterate over the results of a query

• In the MongoDB shell, if you don't assign the cursor to a variable,
it will automatically be used to print up to 20 results.

• if more than 20, use the command it to continue the iteration

• Another way to view all of the result documents:

• assign the cursor to a variable:

var cursor = db.movies.find({ year: 2000 })

• use the following method call to print each result document
in JSON:

cursor.forEach(printjson)

Aggregation

• Recall the aggregate operators in SQL: AVG(), SUM(), etc.

• More generally, aggregation involves computing a result
from a collection of data.

• MongoDB supports two approaches to aggregation:

• single-purpose aggregation methods

• an aggregation pipeline

Single-Purpose Aggregation Methods

• db.collection.count(<selection>)

• returns the number of documents in the collection
that satisfy the specified selection document

• ex: how may R-rated movies are shorter than 90 minutes?

db.movies.count({ rating: "R",
runtime: { $lt: 90 }})

• db.collection.distinct(<field>, <selection>)

• returns an array with the distinct values of the specified field
in documents that satisfy the specified selection document

• if omit the selection, get all distinct values of that field

• ex: which actors have been in one or more of the
top 10 grossing movies?

db.movies.distinct("actors.name",
{ earnings_rank: { $lte: 10 }}

)

countDocuments is now
the preferred name

Aggregation Pipeline

• A more general-purpose and flexible approach to aggregation
is to use a pipeline of aggregation operations.

• Each stage of the pipeline:

• takes a set of documents as input

• applies a pipeline operator to those documents,
which transforms / filters / aggregates them in some way

• produces a new set of documents as output

• db.collection.aggregate(
{ <pipeline-op1>: <pipeline-expression1> },
{ <pipeline-op2>: <pipeline-expression2> },
...,
{ <pipeline-opN>: <pipeline-expressionN> })

full
collection

op1
results

op1 op2
results

op2 final
results

opN
…

Aggregation Pipeline Example

db.orders.aggregate(
{ $match: { status: "A" } },
{ $group: { _id: "$cust_id", total: { $sum: "$amount"} } }

)

source: docs.mongodb.org/manual/core/aggregation-pipeline

note: use $ before a field name to obtain its value

Pipeline Operators

• $project – include, exclude, rename, or create fields

• Example of a single-stage pipeline using $project:

db.people.aggregate(
{ $project: {

name: 1,
whereBorn: "$pob",
yearBorn: { $substr: ["$dob", 0, 4] }

}
})

• for each document in the people collection, extracts:

• name (1 = include, as in earlier projection documents)

• pob, which is renamed whereBorn

• a new field called yearBorn, which is derived
from the existing dob values (yyyy-m-d yyyy)

• the _id field, because we didn't exclude it

• note: use $ before a field name to obtain its value

Pipeline Operators (cont.)

• $group – like GROUP BY in SQL

$group: { _id: <field or fields to group by>,
<computed-field-1>,
..., <computed-field-N> }

• example: compute the number of movies with each rating

db.movies.aggregate(
{ $group: { _id: "$rating",

numMovies: { $sum: 1 }
} })

• { $sum: 1 } is equivalent to COUNT(*) in SQL

• for each document in a given subgroup,
adds 1 to that subgroup's value of the computed field

• can also sum values of a specific field (see earlier slide)

• $sum is one example of an accumulator

• others include: $min, $max, $avg, $addToSet

Pipeline Operators (cont.)

• $match – selects documents according to some criteria

$match: <selection>

where <selection> has identical syntax to the
selection documents used by db.collection.find()

• $unwind – takes a document with an array of values and creates
a separate document for each value in the array.

• see the next example

Example of a Three-Stage Pipeline

db.movies.aggregate(
{ $match: { year: 2013 }},
{ $project: { _id: 0,

movie: "$name",
actor: "$actors.name" } },

{ $unwind: "$actor" }
)

• What does each stage do?

• $match: select movies released in 2013

• $project: for each such movie, create a document with:
• no _id field

• the name field of the movie, but renamed movie

• the names of the actors (an array), as a field named actor

• $unwind: turn each movie's document into a set of
documents, one for each actor in the array of actors

Another Example: What does each stage do?

db.oscars.aggregate(
{ $match: { year: { $gte: 1980 } } },
{ $group: { _id: "$year", count: { $sum: 1 } } },
{ $match: { count: { $gt: 6 } } },
{ $project: { _id: 0, year: "$_id",

num_awards: "$count" } })

• first $match: select Oscars awarded in 1980 or later

• $group: take the Oscar docs selected by $match and:

• create subgroups based on year (as specified by _id field)

• for each subgroup, create a new doc with year as _id and
a count field with the num. of Oscars from that year

• second $match: select docs for years with more than 6 Oscars

• $project: for each such year, create a document with:

• no _id field

• the _id field produced by $group, but renamed year

• the count field produced by $group, renamed num_awards

More on Computing Aggregates

db.oscars.aggregate(
{ $match: { year: { $gte: 1980 } } },
{ $group: { _id: "$year", count: { $sum: 1 } } },
{ $match: { count: { $gt: 6 } } },
{ $project: { _id: 0, year: "$_id",

num_awards: "$count" } })

• The $group stage in the prior query computed a separate
count for each of several subgroups.

• This is comparable to using an aggregate function with
GROUP BY in SQL.

More on Computing Aggregates (cont.)

• What if we just want to compute a single count, average, etc.?

• example: find the average runtime of all R-rated movies.

• In SQL, we would do something like this (with no GROUP BY):

SELECT AVG(runtime)
FROM Movie
WHERE rating = 'R';

• In MongoDB, we still need a $group stage, but we group on
null in order to create a single group:

db.movies.aggregate(
{ $match: { rating: "R" } },
{ $group: { _id: null,

avg_runtime: { $avg: "$runtime" }} },
{ $project: { _id: 0, avg_runtime: 1 } }

)

Two Additional Pipeline Operators

• $sort – sorts documents according to one of the fields
{ $sort: { field1_to_sort_on: sort_order1,

field2_to_sort_on: sort_order2, …} }

• for sort_order, use 1 for ascending
-1 for descending

• $limit – include only the first n documents in a set of results

{ $limit: n }

• Example: Find the name and runtime of the movie with the
longest runtime:

db.movies.aggregate({ $sort: { runtime: -1 } },
{ $limit: 1 },
{ $project: { _id: 0,

name: 1,
runtime: 1 } })

• note: if 2 or more movies are tied, will only get one of them

Recall: Sample Movie Document

{ _id: "0499549",
name: "Avatar",
year: 2009,
rating: "PG-13",
runtime: 162,
genre: "AVYS",
earnings_rank: 1,
actors: [{ id: "0000244",

name: "Sigourney Weaver" },
{ id: "0002332",

name: "Stephen Lang" },
{ id: "0735442",

name: "Michelle Rodriguez" },
{ id: "0757855",

name: "Zoe Saldana" },
{ id: "0941777",

name: "Sam Worthington" }],
directors: [{ id: "0000116",

name: "James Cameron" }] }

Recall: Sample Person and Oscar Documents

{ _id: "0000059",
name: "Laurence Olivier",
dob: "1907-5-22",
pob: "Dorking, Surrey, England, UK",
hasActed: true,
hasDirected: true

}

{ _id: ObjectId("528bf38ce6d3df97b49a0569"),
year: 2013,
type: "BEST-ACTOR",
person: { id: "0000358",

name: "Daniel Day-Lewis" },
movie: { id: "0443272",

name: "Lincoln" }
}

Extra Practice Writing Queries

1) Find the names of all people in the database who acted in
Avatar.
• SQL:

SELECT P.name
FROM Person P, Actor A, Movie M
WHERE P.id = A.actor_id
AND M.id = A.movie_id
AND M.name = 'Avatar';

• MongoDB:

Extra Practice Writing Queries (cont.)

2) How many people in the database who were born in California
have won an Oscar?
• SQL:

SELECT COUNT(DISTINCT P.id)
FROM Person P, Oscar O
WHERE P.id = O.person_id

AND P.pob LIKE '%,%California%';

• Can't easily answer this question using our MongoDB
version of the database. Why not?

Recovery and Logging

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

Review: ACID Properties

• A transaction has the following “ACID” properties:
Atomicity: either all of its changes take effect or none do

Consistency preservation: its operations take the database
from one consistent state to another

Isolation: it is not affected by and does not affect other
concurrent transactions

Durability: once it completes, its changes survive failures

• We’ll now look at how the DBMS guarantees atomicity
and durability.

• ensured by the subsystem responsible for recovery

• Recently accessed database pages are cached in memory
so that subsequent accesses to them don’t require disk I/O.

• There may be more than one cache:

• the DBMS’s own cache (called the memory pool in BDB)

• the operating system’s buffer cache

memory

BDB memory pool OS buffer cache

disk

A Quick Look at Caching

• The user requests the item with the key "horse."

• The page containing "horse" is already in the database's own
cache, so no disk I/O is needed.

Caching Example 1

memory

BDB memory pool OS buffer cache

horse moose bat cat dog

disk

mouse yak

• The user requests the item with the key "cat."

• The page containing "cat" is in the OS buffer cache, so it just
needs to be brought into the database's cache. No disk I/O.

• This produces double buffering – two copies of the same page
in memory.

• one reason that some DBMSs bypass the filesystem

Caching Example 2

memory

BDB memory pool OS buffer cache

horse moose bat cat dog

disk

mouse yak

bat cat dog

• The user requests the item with the key "yak."

• The page with "yak" is in neither cache, so it is:

• read from disk into
the buffer cache

• read into the
database's own cache

Caching Example 3

memory

BDB memory pool OS buffer cache

horse moose bat cat dog

disk

mouse yak

bat cat dog

memory

BDB memory pool OS buffer cache

horse moose bat cat dog

disk

mouse yak

bat cat dog mouse yakmouse yak

• Updates to a page may not make it to disk until the page
is evicted from all of the caches.

• initially, only the page in the DBMS’s cache is updated

• when evicted from the DBMS’s cache, it is written to the
backing file, but it may not go to disk right away

• This complicates recovery, because changes may not be on disk.

memory

BDB memory pool OS buffer cache

horse moose bat cat dog

disk

mouse yak

bat cat dog mouse yakmouse yakzebra mouse zebra

mouse yak

Caching and Disk Writes

What Is Recovery?

• Recovery is performed after:

• a crash of the DBMS

• other non-catastrophic failures (e.g., a reboot)

• (for catastrophic failures, need an archive or replication)

• It makes everything right again.

• allows the rest of the DBMS to be built as if failures
don’t occur

• "the scariest code you’ll ever write" (Margo Seltzer)
• it has to work
• it’s rarely executed
• it can be difficult to test

What Is Recovery? (cont.)

• During recovery, the DBMS takes the steps needed to:

• redo changes made by any committed txn,
if there's a chance the changes didn’t make it to disk

 durability: the txn’s changes are still there after the crash

 atomicity: all of its changes take effect

• undo changes made by any txn that didn’t commit,
if there's a chance the changes made it to disk

 atomicity: none of its changes take effect

• also used when a transaction is rolled back

• In order for recovery to work, need to maintain enough state
about txns to be able to redo or undo them.

• The log is a file that stores the info. needed for recovery.

• It contains:

• update records,
each of which
summarizes a write

• records for transaction
begin and commit

• It does not record reads.

• don’t affect the state
of the database

• aren’t relevant to recovery

• The log is append-only: records are added at the end,
and blocks of the log file are written to disk sequentially.

• more efficient than non-sequential writes to the database files

Logging

record contentsLSN

txn: 1; BEGIN100

txn: 1; item: D1; old: 3000; new: 2500150

txn: 1; item: D2; old: 1000; new: 1500225

txn: 2; BEGIN350

txn: 2; item: D3; old: 7200; new: 6780 400

txn: 1; item: D1; old: 2500; new: 2750470

txn: 1; COMMIT550

txn: 2; item: D2; old: 1500; new: 1300585

txn: 2; item: D3; old: 6780; new: 6760675

• Both updated database pages and log records are cached.

• It’s important that they go to disk in a specific order.

• Example of what can go wrong:

• assume that:

• write(balance1 - 500) made it to disk

• write(balance2 + 500) didn't make it to disk

• neither of the corresponding log records made it to disk

• the database is in an inconsistent state

• without the log records, the recovery system can't restore it

read balance1
write(balance1 - 500)
read balance2
write(balance2 + 500)
CRASH

Write-Ahead Logging (WAL)

• The write-ahead logging (WAL) policy:

before a modified database page is written to disk,
all update log records describing changes on that page
must be forced to disk

• the log records are "written ahead" of the database page

• This ensures that the recovery system can restore the database
to a consistent state.

Write-Ahead Logging (WAL) (cont.)

• Update log records must include both the old and new values
of the changed data element.

• Example log after a crash:

• the database could be in
an inconsistent state

• why?
some of T1’s changes
may not have made it
to disk.
need to redo

• some of T2’s changes
may have made it to
disk.
need to undo

Undo-Redo Logging

record contentsLSN

txn: 1; BEGIN100

txn: 1; item: D1; old: 3000; new: 2500150

txn: 1; item: D2; old: 1000; new: 1500225

txn: 2; BEGIN350

txn: 2; item: D3; old: 7200; new: 6780 400

txn: 1; item: D1; old: 2500; new: 2750470

txn: 1; item: D2; old: 1500; new: 2100500

txn: 1; COMMIT550

txn: 2; item: D2; old: 1500; new: 1300585

txn: 2; item: D3; old: 6780; new: 6760675

• To ensure that it can undo/redo txns as needed,
undo-redo logging follows the WAL policy.

• In addition, it does the following when a transaction commits:

1. writes the commit log record to the in-memory log buffer

2. forces to disk all dirty log records
(dirty = not yet written todisk)

• It does not force the dirty database pages to disk.

• At recovery, it performs two passes:

• first, a backward pass to undo uncommitted transactions

• then, a forward pass to redo committed transactions

Undo-Redo Logging (cont.)

• Backward pass: begin at the last log record and scan backward

• for each commit record, add the txn to a commit list

• for each update by a txn not on the commit list,
undo the update (restoring the old value)

• for now, we skip:

• updates by txns that are on the commit list

• all begin records

• Forward pass:

• for each update by a txn that is on the commit list,
redo the update (writing the new value)

• skip updates by txns that are not on the commit list,
because they were handled on the backward pass

• skip other records as well

Recovery Using Undo-Redo Logging

• Here’s how it would work on our earlier example:

• Recovery restores the database to a consistent state
that reflects:

• all of the updates by txn 1 (which committed before the crash)

• none of the updates by txn 2 (which did not commit)

forward passbackward passrecord contentsLSN

skipskiptxn: 1; BEGIN100

redo: D1 = 2500skiptxn: 1; item: D1; old: 3000; new: 2500150

redo: D2 = 1500skiptxn: 1; item: D2; old: 1000; new: 1500225

skipskiptxn: 2; BEGIN350

skipundo: D3 = 7200txn: 2; item: D3; old: 7200; new: 6780 400

redo: D1 = 2750skiptxn: 1; item: D1; old: 2500; new: 2750470

redo: D2 = 2100skiptxn: 1; item: D2; old: 1500; new: 2100500

skipadd to commit list txn: 1; COMMIT550

skipundo: D2 = 1500txn: 2; item: D2; old: 1500; new: 1300585

skipundo: D3 = 6780txn: 2; item: D3; old: 6780; new: 6760675

Recovery Using Undo-Redo Logging (cont.)

1) Scanning backward at the start of recovery provides
the info needed for undo / redo decisions.

• when we see an update, we already know whether
the txn has committed!

forward passbackward passrecord contentsLSN

skipskiptxn: 1; BEGIN100

redo: D1 = 2500skiptxn: 1; item: D1; old: 3000; new: 2500150

redo: D2 = 1500skiptxn: 1; item: D2; old: 1000; new: 1500225

skipskiptxn: 2; BEGIN350

skipundo: D3 = 7200txn: 2; item: D3; old: 7200; new: 6780 400

redo: D1 = 2750skiptxn: 1; item: D1; old: 2500; new: 2750470

redo: D2 = 2100skiptxn: 1; item: D2; old: 1500; new: 2100500

skipadd to commit list txn: 1; COMMIT550

skipundo: D2 = 1500txn: 2; item: D2; old: 1500; new: 1300585

skipundo: D3 = 6780txn: 2; item: D3; old: 6780; new: 6760675

The Details Matter!

2) To ensure the correct values are on disk after recovery, we:

• put all redos after all undos (consider D2 above)

• perform the undos in reverse order (consider D3 above)

• perform the redos in the same order as the original updates
(consider D1 above)

forward passbackward passrecord contentsLSN

skipskiptxn: 1; BEGIN100

redo: D1 = 2500skiptxn: 1; item: D1; old: 3000; new: 2500150

redo: D2 = 1500skiptxn: 1; item: D2; old: 1000; new: 1500225

skipskiptxn: 2; BEGIN350

skipundo: D3 = 7200txn: 2; item: D3; old: 7200; new: 6780 400

redo: D1 = 2750skiptxn: 1; item: D1; old: 2500; new: 2750470

redo: D2 = 2100skiptxn: 1; item: D2; old: 1500; new: 2100500

skipadd to commit list txn: 1; COMMIT550

skipundo: D2 = 1500txn: 2; item: D2; old: 1500; new: 1300585

skipundo: D3 = 6780txn: 2; item: D3; old: 6780; new: 6760675

The Details Matter!

• We’ve assumed that update records store the old + new values
of the changed data element.

• It’s also possible to use logical logging, which stores
a logical description of the update operation.

• example: increment D1 by 1

• Logical logging is especially useful when we use pages or blocks
as data elements, rather than records.

• storing the old and new contents of a page or block
would take up a lot of space

• instead, store a logical description

• for example: "add record r somewhere on D1"

Logical Logging

• When we store old and new data values, the associated
undo/redo operations are idempotent .

• can be performed multiple times without changing the result

• Problem: logical update operations may not be idempotent.

• example: if "increment D1 by 1" has already been performed,
we don't want to redo it

• example: if "increment D1 by 1" has not been performed,
we don't want to undo it

• example: if "add record r to page D1" has already been
performed, we don't want to redo it

• To ensure that only the necessary undo/redos are made,
the DBMS makes use of the log sequence numbers (LSNs)
associated with the update log records.

Logical Logging (cont.)

• When a data element is updated, the DBMS:

• stores the LSN of the update log record with the data element

• known as the datum LSN

• stores the old LSN of the data element in the log record

Storing LSNs with Data Elements

D3D2D1record contentsLSN
"moo" / 0"oh" / 0"foo" / 0txn: 1; BEGIN100

"bar"/ 150txn: 1; item: D1; new: "bar"; old: "foo"; olsn: 0150

log file data elements (value / datum LSN)

• During recovery, there are
three LSNs to consider
for each update record:

1) the record LSN: the one
for the update record itself

record contentsLSN
txn: 3; BEGIN700

txn: 3; item: D5; old: "foo";
new: "bar"; olsn: 0

770

txn: 4; BEGIN825

txn: 4; item: D4; old: 9000;
new: 8500; olsn: 0

850

txn: 4; item: D6; old: 5.7;
new: 8.9; olsn: 0

900

txn: 3; item: D7; old: "zoo";
new: "cat"; olsn: 0

930

txn: 4; COMMIT980

txn: 3; item: D4; old: 8500;
new: 7300; olsn: 850

1000

txn: 3; item: D6; old: 8.9;
new: 4.1; olsn: 900

1100

Recovery Using LSNs

• During recovery, there are
three LSNs to consider
for each update record:

1) the record LSN: the one
for the update record itself

2) the on-disk datum LSN
for the data item

• the one associated with it
in the database file

record contentsLSN
txn: 3; BEGIN700

txn: 3; item: D5; old: "foo";
new: "bar"; olsn: 0

770

txn: 4; BEGIN825

txn: 4; item: D4; old: 9000;
new: 8500; olsn: 0

850

txn: 4; item: D6; old: 5.7;
new: 8.9; olsn: 0

900

txn: 3; item: D7; old: "zoo";
new: "cat"; olsn: 0

930

txn: 4; COMMIT980

txn: 3; item: D4; old: 8500;
new: 7300; olsn: 850

1000

txn: 3; item: D6; old: 8.9;
new: 4.1; olsn: 900

1100

Recovery Using LSNs

on-disk datum LSNs:
D4: 0, D5: 0, D6: 1100, D7: 930

• During recovery, there are
three LSNs to consider
for each update record:

1) the record LSN: the one
for the update record itself

2) the on-disk datum LSN
for the data item

• the one associated with it
in the database file

3) the olsn: the old datum LSN
for the data item

• the one associated with it
when the update was
originally requested

record contentsLSN
txn: 3; BEGIN700

txn: 3; item: D5; old: "foo";
new: "bar"; olsn: 0

770

txn: 4; BEGIN825

txn: 4; item: D4; old: 9000;
new: 8500; olsn: 0

850

txn: 4; item: D6; old: 5.7;
new: 8.9; olsn: 0

900

txn: 3; item: D7; old: "zoo";
new: "cat"; olsn: 0

930

txn: 4; COMMIT980

txn: 3; item: D4; old: 8500;
new: 7300; olsn: 850

1000

txn: 3; item: D6; old: 8.9;
new: 4.1; olsn: 900

1100

Recovery Using LSNs

on-disk datum LSNs:
D4: 0, D5: 0, D6: 1100, D7: 930

• During the backward pass,
we undo an update if:

• the txn did not commit

• datum LSN == record LSN

• When we undo, we also set:
datum LSN = olsn

record contentsLSN
txn: 3; BEGIN700

txn: 3; item: D5; old: "foo";
new: "bar"; olsn: 0

770

txn: 4; BEGIN825

txn: 4; item: D4; old: 9000;
new: 8500; olsn: 0

850

txn: 4; item: D6; old: 5.7;
new: 8.9; olsn: 0

900

txn: 3; item: D7; old: "zoo";
new: "cat"; olsn: 0

930

txn: 4; COMMIT980

txn: 3; item: D4; old: 8500;
new: 7300; olsn: 850

1000

txn: 3; item: D6; old: 8.9;
new: 4.1; olsn: 900

1100

The Backward Pass Using LSNs

on-disk datum LSNs:
D4: 0, D5: 0, D6: 1100, D7: 930

forward passbackward passrecord contentsLSN
txn: 3; BEGIN700

txn: 3; item: D5; old: "foo"; new: "bar"; olsn: 0770

txn: 4; BEGIN825

txn: 4; item: D4; old: 9000; new: 8500; olsn: 0850

txn: 4; item: D6; old: 5.7; new: 8.9; olsn: 0 900

txn: 3; item: D7; old: "zoo"; new: "cat"; olsn: 0930

txn: 4; COMMIT980

txn: 3; item: D4; old: 8500; new: 7300; olsn: 8501000

txn: 3; item: D6; old: 8.9; new: 4.1; olsn: 9001100

• datum LSNs: D4: 0, 850 D5: 0 D6: 1100, 900 D7: 930

Which updates will be undone?

forward passbackward passrecord contentsLSN
skiptxn: 3; BEGIN700

0 != 770
don't undo

txn: 3; item: D5; old: "foo"; new: "bar"; olsn: 0770

skiptxn: 4; BEGIN825

skiptxn: 4; item: D4; old: 9000; new: 8500; olsn: 0850

skiptxn: 4; item: D6; old: 5.7; new: 8.9; olsn: 0 900

930 == 930
undo: D7 = "zoo"
datum LSN = 0

txn: 3; item: D7; old: "zoo"; new: "cat"; olsn: 0930

add to
commit list

txn: 4; COMMIT980

0 != 1000
don't undo

txn: 3; item: D4; old: 8500; new: 7300; olsn: 8501000

1100 == 1100
undo: D6 = 8.9
datum LSN = 900

txn: 3; item: D6; old: 8.9; new: 4.1; olsn: 9001100

• datum LSNs: D4: 0, 850 D5: 0 D6: 1100, 900 D7: 930, 0

Which updates will be undone?

• During the forward pass,
we redo an update if:

• the txn did commit

• datum LSN == olsn

• When we redo, we also set:
datum LSN = record LSN

record contentsLSN
txn: 3; BEGIN700

txn: 3; item: D5; old: "foo";
new: "bar"; olsn: 0

770

txn: 4; BEGIN825

txn: 4; item: D4; old: 9000;
new: 8500; olsn: 0

850

txn: 4; item: D6; old: 5.7;
new: 8.9; olsn: 0

900

txn: 3; item: D7; old: "zoo";
new: "cat"; olsn: 0

930

txn: 4; COMMIT980

txn: 3; item: D4; old: 8500;
new: 7300; olsn: 850

1000

txn: 3; item: D6; old: 8.9;
new: 4.1; olsn: 900

1100

The Forward Pass Using LSNs

on-disk datum LSNs:
D4: 0, D5: 0, D6: 900, D7: 0

forward passbackward passrecord contentsLSN
skiptxn: 3; BEGIN700

0 != 770
don't undo

txn: 3; item: D5; old: "foo"; new: "bar"; olsn: 0770

skiptxn: 4; BEGIN825

skiptxn: 4; item: D4; old: 9000; new: 8500; olsn: 0850

skiptxn: 4; item: D6; old: 5.7; new: 8.9; olsn: 0 900

930 == 930
undo: D7 = "zoo"
datum LSN = 0

txn: 3; item: D7; old: "zoo"; new: "cat"; olsn: 0930

add to
commit list

txn: 4; COMMIT980

0 != 1000
don't undo

txn: 3; item: D4; old: 8500; new: 7300; olsn: 8501000

1100 == 1100
undo: D6 = 8.9
datum LSN = 900

txn: 3; item: D6; old: 8.9; new: 4.1; olsn: 9001100

• datum LSNs: D4: 0, 850 D5: 0 D6: 1100, 900 D7: 930, 0

Which updates will be redone?

forward passbackward passrecord contentsLSN
skipskiptxn: 3; BEGIN700

skip0 != 770
don't undo

txn: 3; item: D5; old: "foo"; new: "bar"; olsn: 0770

skipskiptxn: 4; BEGIN825

0 == 0
redo: D4 = 8500
datum LSN = 850

skiptxn: 4; item: D4; old: 9000; new: 8500; olsn: 0850

900 != 0
don't redo

skiptxn: 4; item: D6; old: 5.7; new: 8.9; olsn: 0 900

skip930 == 930
undo: D7 = "zoo"
datum LSN = 0

txn: 3; item: D7; old: "zoo"; new: "cat"; olsn: 0930

skipadd to
commit list

txn: 4; COMMIT980

skip0 != 1000
don't undo

txn: 3; item: D4; old: 8500; new: 7300; olsn: 8501000

skip1100 == 1100
undo: D6 = 8.9
datum LSN = 900

txn: 3; item: D6; old: 8.9; new: 4.1; olsn: 9001100

• datum LSNs: D4: 0, 850 D5: 0 D6: 1100, 900 D7: 930, 0

Which updates will be redone?

• As a DBMS runs, the log gets longer and longer.

• thus, recovery could end up taking a very long time!

• To avoid long recoveries, periodically perform a checkpoint.

• force data and log records to disk to create a
consistent on-disk database state

• during recovery, don’t need to consider operations
that preceded this consistent state

Checkpoints

• Stop activity and wait for a consistent state.

1) prohibit new transactions from starting and wait until all
current transactions have aborted or committed.

• Once there is a consistent state:

2) force all dirty log records to disk
(dirty = not yet written to disk)

3) force all dirty database pages to disk

4) write a checkpoint record to the log

• these steps must be performed in the specified order!

• When performing recovery, go back to the most recent
checkpoint record.

• Problem with this approach?

Static Checkpoints

• Don’t stop and wait for a consistent state.
Steps:

1) prevent all update operations

2) force all dirty log records to disk

3) force all dirty database pages to disk

4) write a checkpoint record to the log

• include a list of all active txns

• When performing recovery:
• backward pass: go back until you’ve seen the start records

of all uncommitted txns in the most recent checkpoint record

• forward pass: begin from the log record that comes after
the most recent checkpoint record. why?

• note: if all txns in the checkpoint record are on the commit list,
we stop the backward pass at the checkpoint record

Dynamic Checkpoints

• Initial datum LSNs: D4: 110 D5: 140,0 D6: 80

Could D4 have a datum LSN of less than 110?

forward passbackward passrecord contentsLSN
txn: 1; BEGIN100

txn: 1; item: D4; old: 20; new: 15; olsn: 0110

stop heretxn: 2; BEGIN120

add to
commit list

txn: 1; COMMIT130

undo: D5 = 12
datum LSN = 0

txn: 2; item: D5; old: 12; new: 13; olsn: 0 140

note active txns CHECKPOINT (active txns = 2)150

start here
skip

don’t undotxn: 2; item: D4; old: 15; new: 50; olsn: 110160

skipskiptxn: 3; BEGIN170

skipdon’t undotxn: 3; item: D6; old: 6; new: 8; olsn: 80180

Example of Recovery with Dynamic Checkpoints

• Only store the info. needed to undo txns.

• update records include only the old value

• Like undo-redo logging, undo-only logging follows WAL.

• In addition, all database pages changed by a transaction must be
forced to disk before allowing the transaction to commit. Why?

• At transaction commit:

1. force all dirty log records to disk

2. force database pages changed by the txn to disk

3. write the commit log record

4. force the commit log record to disk

• During recovery, the system only performs the backward pass.

Undo-Only Logging

• Only store the info. needed to redo txns.

• update records include only the new value

• Like the other two schemes, redo-only logging follows WAL.

• In addition, all database pages changed by a txn are held in
memory until it commits and its commit record is forced to disk.

• At transaction commit:

1. write the commit log record

2. force all dirty log records to disk

(changed database pages are allowed to go to disk anytime after this)

• If a transaction aborts, none of its changes can be on disk.

• During recovery, perform the backward pass to build the commit
list (no undos). Then perform the forward pass as in undo-redo.

Redo-Only Logging

• Factors to consider in the comparison:

• complexity/efficiency of recovery

• size of the log files

• what needs to happen when a txn commits

• other restrictions that a logging scheme imposes
on the system

• We'll list advantages and disadvantages of each scheme.

• Undo-only:

+ smaller logs than undo-redo

+ simple and quick recovery procedure (only one pass)

– forces log and data to disk at commit;
have to wait for the I/Os

Comparing the Three Logging Schemes

• Redo-only:

+ smaller logs than undo-redo

+/ – recovery: more complex than undo-only, less than undo-redo

– must be able to cache all changes until the txn commits

• limits the size of transactions

• constrains the replacement policy of the cache

+ forces only log records to disk at commit

• Undo-redo:

– larger logs

– more complex recovery

+ forces only log records to disk at commit

+ don’t need to retain all data in the cache until commit

Comparing the Three Logging Schemes (cont.)

• Why is each type needed?
• assume undo-redo logging

• update records: hold the info. needed to undo/redo changes

• commit records: allow us to determine which changes should be
undone and which should be redone

• begin records: allow us to determine the extent of the backward
pass in the presence of dynamic checkpoints

• checkpoint records: limit the amount of the log that is processed
during recovery

Reviewing the Log Record Types

• Recall the three logging schemes:
• undo-redo, undo-only, redo-only

• What type of logging is being
used to create the log at right?

record contentsLSN
txn: 1; BEGIN100

txn: 1; item: D1; old: 45210

txn: 2; BEGIN300

txn: 2; item: D2; old: 80 420

txn: 2; item: D3; old: 30500

txn: 2; COMMIT525

txn: 1; item: D3; old: 60 570

Review Problem
txn 1
writes 75 for D1
writes 90 for D3

txn 2
writes 25 for D2
writes 60 for D3

• Recall the three logging schemes:
• undo-redo, undo-only, redo-only

• What type of logging is being
used to create the log at right?
undo-only

• To make the rest of the problem
easier, add the new values to
the log…

Review Problem
txn 1
writes 75 for D1
writes 90 for D3

txn 2
writes 25 for D2
writes 60 for D3

record contentsLSN
txn: 1; BEGIN100

txn: 1; item: D1; old: 45; new: 75210

txn: 2; BEGIN300

txn: 2; item: D2; old: 80; new: 25420

txn: 2; item: D3; old: 30; new: 60500

txn: 2; COMMIT525

txn: 1; item: D3; old: 60; new: 90570

• Recall the three logging schemes:
• undo-redo, undo-only, redo-only

• At the start of recovery, what are
the possible on-disk values
under undo-only?

in-memory possible on-disk
D1:

D2:

D3:

Review Problem
txn 1
writes 75 for D1
writes 90 for D3

txn 2
writes 25 for D2
writes 60 for D3

record contentsLSN
txn: 1; BEGIN100

txn: 1; item: D1; old: 45; new: 75210

txn: 2; BEGIN300

txn: 2; item: D2; old: 80; new: 25 420

txn: 2; item: D3; old: 30; new: 60500

txn: 2; COMMIT525

txn: 1; item: D3; old: 60; new: 90 570

• does not pin values in memory
 may go to disk at any time

• at commit, forces dirty data
values to disk
 older values are no longer

possible

• Recall the three logging schemes:
• undo-redo, undo-only, redo-only

• At the start of recovery, what are
the possible on-disk values
under redo-only?

in-memory possible on-disk
D1:

D2:

D3:

Review Problem
txn 1
writes 75 for D1
writes 90 for D3

txn 2
writes 25 for D2
writes 60 for D3

record contentsLSN
txn: 1; BEGIN100

txn: 1; item: D1; old: 45; new: 75210

txn: 2; BEGIN300

txn: 2; item: D2; old: 80; new: 25 420

txn: 2; item: D3; old: 30; new: 60500

txn: 2; COMMIT525

txn: 1; item: D3; old: 60; new: 90 570

• does pin values in memory
 can't go to disk until commit

• at commit, unpins values
but does not force them to disk
 older values are still

possible

• Recall the three logging schemes:
• undo-redo, undo-only, redo-only

• At the start of recovery, what are
the possible on-disk values
under undo-redo?

in-memory possible on-disk
D1:

D2:

D3:

Review Problem
txn 1
writes 75 for D1
writes 90 for D3

txn 2
writes 25 for D2
writes 60 for D3

record contentsLSN
txn: 1; BEGIN100

txn: 1; item: D1; old: 45; new: 75210

txn: 2; BEGIN300

txn: 2; item: D2; old: 80; new: 25 420

txn: 2; item: D3; old: 30; new: 60500

txn: 2; COMMIT525

txn: 1; item: D3; old: 60; new: 90570

• does not pin values in memory
 may go to disk at any time

• at commit, does not force dirty
data to disk
 older values are still

possible

• In a centralized database, logging and recovery are enough
to ensure atomicity.

• if a txn's commit record makes it to the log,
all of its changes will eventually take effect

• if a txn's commit record isn't in the log when a crash occurs,
none of its changes will remain after recovery

• What about atomicity in a distributed database?

Atomicity

Recall: Distributed Transactions

• A distributed transaction involves data stored at multiple sites.

• One of the sites serves as the coordinator of the transaction.

• The coordinator divides a distributed transaction into
subtransactions, each of which executes on one of the sites.

read balance1
write(balance1 - 500)
read balance2
write(balance2 + 500)

read balance1
write(balance1 - 500)

read balance2
write(balance2 + 500)

subtxn 1-1

subtxn 1-2

txn 1

• In a distributed database:

• each site performs local logging and recovery of its subtxns

• that alone is not enough to ensure atomicity

• The sites must coordinate to ensure that either:

• all of the subtxns are committed
or

• none of them are

Distributed Atomicity

Distributed Atomicity (cont.)

• Example of what could go wrong:

• a subtxn at one of the sites deadlocks and is aborted

• before the coordinator of the txn finds out about this,
it tells the other sites to commit, and they do so

• Another example:

• the coordinator notifies the other sites that it's time to commit

• most of the sites commit their subtxns

• one of the sites crashes before committing

Two-Phase Commit (2PC)

• A protocol for deciding whether to commit a distributed txn.

• Basic idea:

• coordinator asks sites if they're ready to commit

• if a site is ready, it:

1. prepares its subtxn – putting it in the ready state

2. tells the coordinator it's ready

• if all sites say they're ready, all subtxns are committed

• otherwise, all subtxns are aborted (i.e., rolled back)

• Preparing a subtxn means ensuring it can be either
committed or rolled back – even after a failure.

• need to at least…

• some logging schemes need additional steps

• After saying it's ready, a site must wait to be told what to do next.

2PC Phase I: Prepare

• When it's time to commit a distributed txn T, the coordinator:

• force-writes a prepare record for T to its own log

• sends a prepare message to each participating site

• If a site can commit its subtxn, it:

• takes the steps needed to put its txn in the ready state

• force-writes a ready record for T to its log

• sends a ready message for T to the coordinator and waits

• If a site needs to abort its subtxn, it:

• force-writes a do-not-commit record for T to its log

• sends a do-not-commit message for T to the coordinator

• can it abort the subtxn now?

• Note: we always log a message before sending it to others.
• allows the decision to send the message to survive a crash

2PC Phase II: Commit or Abort

• The coordinator reviews the messages from the sites.

• if it doesn't hear from a site within some time interval,
it assumes a do-not-commit message

• If all sites sent ready messages for T, the coordinator:

• force-writes a commit record for T to its log

• T is now officially committed

• sends commit messages for T to the participating sites

• Otherwise, the coordinator:

• force-writes an abort record for T to its log

• sends abort messages for T to the participating sites

• Each site:

• force-writes the appropriate record (commit or abort) to its log

• commits or aborts its subtxn as instructed

2PC State Transitions

• A subtxn can enter the aborted state from the initial state at
any time.

• After entering the ready state, it can only enter the aborted state
after receiving an abort message.

• A subtxn can only enter the committed state from the ready state,
and only after receiving a commit message.

initial

committedaborted

ready

prepare msg received; log records flushed

commit msg
received

abort msg
received

Recovery When Using 2PC

• When a site recovers, its decides whether to undo or redo
its subtxn for a txn T based on the last record for T in its log.

• Case 1: the last log record for T is a commit record.

• redo the subtxn's updates as needed

• Case 2: the last log record for T is an abort record.

• undo the subtxn's updates as needed

• Case 3: the last log record for T is a do-not-commit record.

• undo the subtxn's updates as needed

• why is this correct?

Recovery When Using 2PC (cont.)

• Case 4: the last log record for T is from before 2PC began
(e.g., an update record).

• undo the subtxn's updates as needed

• this works in both of the possible situations:

• 2PC has already completed without hearing from this site
why?

• 2PC is still be going on
why?

• Case 5: the last log record for T is a ready record.

• contact the coordinator (or another site) to determine T's fate

• why can the site still commit or abort T as needed?

• if it can't reach another site, it must block until it can reach one!

What if the Coordinator Fails?

• The other sites can either:

• wait for the coordinator to recover

• elect a new coordinator

• In the meantime, each site can determine the fate of any
current distributed transactions.

• Case 1: a site has not received a prepare message for txn T

• can abort its subtxn for T

• preferable to waiting for the coordinator to recover,
because it allows the T's fate to be decided

• Case 2: a site has received a prepare message for T,
but has not yet sent ready message

• can also abort its subtxn for T now. why?

What if the Coordinator Fails? (cont.)

• Case 3: a site sent a ready message for T but didn't hear back

• poll the other sites to determine T's fate

evidence conclusion/action

at least one site has ???
a commit record for T

at least one site has ???
an abort record for T

no commit/abort records for T; ???
at least one site does not have
a ready record for T

no commit/abort records for T; can't know T's fate unless
all surviving sites have coordinator recovers. why?
ready records for T

• What type of logging is being
used to create the log at right?

• At the start of recovery, what are
the possible on-disk values?

Extra Practice

record contentsLSN
txn: 1; BEGIN100

txn: 1; item: D1; new: 2500150

txn: 2; BEGIN350

txn: 2; item: D2; new: 6780 400

txn: 1; item: D1; new: 2750470

txn: 1; COMMIT550

txn: 2; item: D1; new: 1300585

original values:
D1=1000, D2=3000

• What if the DBMS were using
undo-only logging instead?

• At the start of recovery, what are
the possible on-disk values?

in-memory possible on-disk
D1: 1000

D2: 3000

Extra Practice

record contentsLSN
txn: 1; BEGIN100

txn: 1; item: D1; new: 2500150

txn: 2; BEGIN350

txn: 2; item: D2; new: 6780 400

txn: 1; item: D1; new: 2750470

txn: 1; COMMIT550

txn: 2; item: D1; new: 1300585

original values:
D1=1000, D2=3000

• What if the DBMS were using
undo-redo logging instead?

• At the start of recovery, what are
the possible on-disk values?

in-memory possible on-disk
D1: 1000

D2: 3000

Extra Practice

record contentsLSN
txn: 1; BEGIN100

txn: 1; item: D1; new: 2500150

txn: 2; BEGIN350

txn: 2; item: D2; new: 6780 400

txn: 1; item: D1; new: 2750470

txn: 1; COMMIT550

txn: 2; item: D1; new: 1300585

original values:
D1=1000, D2=3000

Performance Tuning

Wrap-up and Conclusions

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

Reference

Database Tuning: A Principled Approach, Dennis E. Shasha

Goals of Performance Tuning

• Increase throughput – work completed per time

• in a DBMS, typically transactions per second (txns/sec)

• other options: reads/sec, writes/sec, operations/sec

• measure over some interval (time-based or work-based)

• Decrease response time or latency
– the time spent waiting for an operation to complete

• overall throughput may be good,
but some txns may spend a long time waiting

• Secondary goals (ways of achieving the other two):

• reduce lock contention

• reduce disk I/Os

• etc.

Challenges of Tuning

• Often need to balance conflicting goals

• example: tuning the checkpoint interval
– the amount of time between checkpoints of the log.

• goals?

•

•

• It’s typically difficult to:

• determine what to tune

• predict the impact of a potential tuning decision

• The optimal tuning is workload-dependent.

• can vary over time

• Three levels of tuning:

1. low level: hardware

• disks, memory, CPU, etc.

2. middle level: DBMS parameters

• page size, checkpoint interval, etc.

3. high level

• schema, indices, transactions, queries, etc.

• These levels interact with each other.

• tuning on one level may change the tuning needs
on another level

• need to consider together

What Can Be Tuned?

1. Hardware-Level Tuning (Low Level)

• Disk subsystem

• limiting factor = rate at which data can be accessed

• based on:

• disk characteristics (seek time, transfer time, etc.)

• number of disks

• layout of data on the disk

• adding disks increases parallelism

• may thus increase throughput

• adjusting on-disk layout may also improve performance

• sequential accesses are more efficient than random ones

• Memory

• adding memory allows more pages to fit in the cache

• can thereby reduce the number of I/Os

• however, memory is more expensive than disk

Other Details of Hardware Tuning

• Can also add:

• processing power

• network bandwidth (in the case of a distributed system)

• Rules of thumb for adding hardware (Shasha)

• start by adding memory

• based on some measure of your working set

• then add disks if disks are still overloaded

• then add processing power if CPU utilization >= 85%

• then consider adding network bandwidth

• Consider other options before adding hardware!

• tune software: e.g., add an index to facilitate a common query

• use current hardware more effectively:
• example: give the log its own disk

2. Parameter Tuning (Middle Level)

• DBMSs—like most complex software systems—include
parameters (“knobs”) that can be tuned by the user.

• Example knobs:

• checkpoint interval

• deadlock-detection interval

• several more we'll look at in a moment

• Optimal knob settings depend on the workload.

Example: Tuning Lock Granularity

• possibilities include: page, record, entire table

• How could finer-grained locking improve performance?

•

• How could finer-grained locking degrade performance?

•

•

• Rule of thumb (Shasha):

• measure the “length” of a txn in terms of the percentage
of the table that it accesses

• “long” txns should use table-level locking

• “medium” txns that are based on a clustered/internal index
should use page-level locking

• “short” txns should use record-level locking

Example: Tuning the MPL

• MPL = maximum number of txns that can operate concurrently

• How could increasing the MPL improve performance?

•

• How could increasing the MPL degrade performance?

•

• Shasha: no rule of thumb works in all cases.
Instead, use an incremental approach:

• start with a small MPL value

• increase MPL by one and measure performance

• keep increasing MPL until performance no longer improves

01000 Joe Smith
01001 Jane Green
01002 Alice White
01003 John Harvard
01004 Alan Turing
01005 Rev. Joshua Bayes
01006 Jim Gray
01007 Rear Adm. Grace Hopper

Example: Tuning Page Size

• Recall:

• the filesystem transfers data in units called blocks

• the DBMS groups data into pages
• may or may not correspond to a block

4K page

file block

8K page == block size

01000 Joe Smith
01001 Jane Green
01002 Alice White
01003 John Harvard
01004 Alan Turing
01005 Rev. Joshua Bayes
01006 Jim Gray
01007 Rear Adm. Grace Hopper

Tuning Page Size (cont.)

• How could a smaller page size improve performance?

4K page

file block

Tuning Page Size (cont.)

• How could a smaller page size degrade performance?

01000 Joe Smith
01001 Jane Green
01002 Alice White
01003 John Harvard
01004 Alan Turing
01005 Rev. Joshua Bayes
01006 Jim Gray
01007 Rear Adm. Grace Hopper

4K page

file block

Tuning Page Size (cont.)

• What if we select a page size > block size?

- can reduce your ability to keep useful data in the cache
(when accesses are more or less random)

- if page-level locking, can increase contention for locks

- can lead to unnecessary I/O due to OS prefetching

01000 Joe Smith
01001 Jane Green
01002 Alice White
01003 John Harvard
01004 Alan Turing
01005 Rev. Joshua Bayes
01006 Jim Gray
01007 Rear Adm. Grace Hopper

16K page

file block

01008 Ted Codd
01009 Margo Seltzer
01010 George Kollios

+ can reduce the number
of overflow pages

+ reduces I/O for workloads
with locality (e.g., range
searches)

Tuning Page Size (cont.)

• Rule of thumb?

• page size = block size is usually best

• if lots of lock contention, reduce the page size

• if lots of large items, increase the page size

3. High-Level Tuning

• Tune aspects of the schema and workload:

• relations

• indices/views

• transactions/queries

• Tuning at this level:

• is more system-independent than tuning at the other levels

• may eliminate the need for tuning at the lower levels

Tuning a Relational Schema

• Example schema: account(account-num, branch, balance)
customer(customer-num, name, address)
owner(account-num, customer-num)
(One account may have multiple owners.)

• Vertical fragmentation: divide one relation into two or more

• e.g., what if most queries involving account are only
interested in the account-num and balance?

• Combining relations:

• e.g., store the join of account and owner:
account2(account-num, branch, balance, customer-num)

• what’s one drawback of this approach?

Recall: Primary vs. Secondary Indices

• Data records are stored inside a clustered index structure.

• also known as the primary index

• We can also have unclustered indices based on other fields.

• also known as secondary indices

• Example: Customer(id, name, street, city, state, zip)

• primary index:
(key, value) = (id, all of the remaining fields)

• a secondary index to enable quick searches by name
(key, value) = (name, id) does not include the other fields!

Tuning Indices

• If SELECTs are slow, add one or more secondary index.

• If modifications are slow, remove one or more index. Why?

• Other index-tuning decisions:

• what type of index?
• hash or B-tree; see lecture on storage structures

• which index should be the clustered/primary?

• Complication: the optimal set of indices may depend
on the query-evaluation plans selected by the query optimizer!

Tuning Transactions/Queries

• Banking database example:

• lots of short transactions that update balances

• long, read-only transactions that scan the entire account
relation to compute summary statistics for each branch

• what happens if these two types of transactions run
concurrently? (assume rigorous 2PL)

• Possible options:

• execute the long txns during a quiet period

• multiversion concurrency control
• make the long, read-only txns operate on an earlier version,

so they don't conflict with the short update txns

• use a weaker isolation level
• ex: allow read-only txn to execute without acquiring locks

Deciding What to Tune

• Your system is slow. What should you do?

• Not a simple process

• many factors may contribute to a given bottleneck

• fixing one problem may not eliminate the bottleneck

• eliminating one bottleneck may expose others

Deciding What to Tune (cont.)

• Iterative approach (Shasha):

repeat
monitor the system
tune important queries
tune global parameters (includes DBMS params,

OS params, relations, indices, views, etc.)
until satisfied or can do no more

if still unsatisfied
add appropriate hardware (see rules of thumb from earlier)
start over from the beginning!

Example Tuning Scenarios

• From Shasha’s book

• All scenarios start with the complaint that an application is
running too slowly.

• Scenario 1:
• workload:

• data-mining application for a chain of department stores
• queries the following relation during the day:

oldsales(cust-num, cust-city, item, quantity, date, price)
• indices on cust-num, cust-city, item to speed up the queries
• at night:

• updates performed as a bulk load
• bulk delete to eliminate records more than 3 weeks old

• specific problems:
• bulk load times are very slow
• daytime queries are also degenerating

Example Tuning Scenarios (cont.)

• Scenario 2:
• workload:

• an application that is essentially read-only
• performs many scans of a relation

• relevant info:
• disks show high access utilization but low space utilization
• the log is on a disk by itself
• each scan currently requires many disk seeks
• management refuses to buy more disks

Example Tuning Scenarios (cont.)

• Scenario 3:
• workload:

• an airline manages 100 flights per day
• two tables:

passenger(passenger-name, flight-num, seat-num)
occupancy(flight-num, total-passengers)

• every reservation txn updates both tables
• relevant info:

• there is a high degree of lock contention

Looking Back

• Recall our two-layer view of a DBMS:

• When choosing an approach to
information management,
choose an option for each layer.

• We’ve seen several options for the storage layer:
• transactional storage engine
• plain-text files (e.g., for XML or JSON)
• native XML DBMS
• NoSQL DBMS (with support for sharding and replication)

• We’ve also looked at several options for the logical layer:
• relational model
• semistructured: XML, JSON
• other NoSQL models: key/value pairs, column-families

logical layer

storage engine

OS FS

disks

One Size Does Not Fit All

• An RDBMS is an extremely powerful tool for managing data.

• However, it may not always be the best choice.

• see the first lecture for a reminder of the reasons why!

• Need to learn to choose the right tool for a given job.

• In some cases, may need to develop new tools!

Implementing a Storage Engine

• We looked at ways that data is stored on disk.

• We considered index structures.

• B-trees and hash tables

• provide efficient search and insertion according to
one or more key fields

• We also spoke briefly about the use of caching
to reduce disk I/Os.

memory

BDB memory pool OS buffer cache

horse moose bat cat dog

disk

mouse yak

bat cat dog

Implementing a Transactional Storage Engine

• We looked at how the “ACID” properties are guaranteed:

Atomicity: either all of a txn’s changes take effect or none do

Consistency preservation: a txn’s operations take the
database from one consistent state to another

Isolation: a txn is not affected by other concurrent txns

Durability: once a txn completes, its changes survive failures

Distributed Databases and NoSQL Stores

• We looked at how databases can be:

• fragmented/sharded

• replicated

• We also looked at NoSQL data stores:

• designed for use on clusters of machines

• can handle massive amounts of data / queries

Logical-to-Physical Mapping

• The topics related to storage engines are potentially relevant
to any database system.
• not just RDBMSs
• any logical layer can be built on top of any storage layer

• Regardless of the model, you need a logical-to-physical mapping.

• In PS 2, you implemented part of a
logical-to-physical mapping for the
relational model using Berkeley DB.

• We also looked at options for how to perform
this mapping for XML. storage engine

OS FS

disks

“middle layer”

SQL parser

