
Recovery and Logging

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

Review: ACID Properties

• A transaction has the following “ACID” properties:
Atomicity: either all of its changes take effect or none do

Consistency preservation: its operations take the database
from one consistent state to another

Isolation: it is not affected by and does not affect other
concurrent transactions

Durability: once it completes, its changes survive failures

• We’ll now look at how the DBMS guarantees atomicity
and durability.

• ensured by the subsystem responsible for recovery

• Recently accessed database pages are cached in memory
so that subsequent accesses to them don’t require disk I/O.

• There may be more than one cache:

• the DBMS’s own cache (called the memory pool in BDB)

• the operating system’s buffer cache

memory

BDB memory pool OS buffer cache

disk

A Quick Look at Caching

• The user requests the item with the key "horse."

• The page containing "horse" is already in the database's own
cache, so no disk I/O is needed.

Caching Example 1

memory

BDB memory pool OS buffer cache

horse moose bat cat dog

disk

mouse yak

• The user requests the item with the key "cat."

• The page containing "cat" is in the OS buffer cache, so it just
needs to be brought into the database's cache. No disk I/O.

• This produces double buffering – two copies of the same page
in memory.

• one reason that some DBMSs bypass the filesystem

Caching Example 2

memory

BDB memory pool OS buffer cache

horse moose bat cat dog

disk

mouse yak

bat cat dog

• The user requests the item with the key "yak."

• The page with "yak" is in neither cache, so it is:

• read from disk into
the buffer cache

• read into the
database's own cache

Caching Example 3

memory

BDB memory pool OS buffer cache

horse moose bat cat dog

disk

mouse yak

bat cat dog

memory

BDB memory pool OS buffer cache

horse moose bat cat dog

disk

mouse yak

bat cat dog mouse yakmouse yak

• Updates to a page may not make it to disk until the page
is evicted from all of the caches.

• initially, only the page in the DBMS’s cache is updated

• when evicted from the DBMS’s cache, it is written to the
backing file, but it may not go to disk right away

• This complicates recovery, because changes may not be on disk.

memory

BDB memory pool OS buffer cache

horse moose bat cat dog

disk

mouse yak

bat cat dog mouse yakmouse yakzebra mouse zebra

mouse yak

Caching and Disk Writes

What Is Recovery?

• Recovery is performed after:

• a crash of the DBMS

• other non-catastrophic failures (e.g., a reboot)

• (for catastrophic failures, need an archive or replication)

• It makes everything right again.

• allows the rest of the DBMS to be built as if failures
don’t occur

• "the scariest code you’ll ever write" (Margo Seltzer)
• it has to work
• it’s rarely executed
• it can be difficult to test

What Is Recovery? (cont.)

• During recovery, the DBMS takes the steps needed to:

• redo changes made by any committed txn,
if there's a chance the changes didn’t make it to disk

 durability: the txn’s changes are still there after the crash

 atomicity: all of its changes take effect

• undo changes made by any txn that didn’t commit,
if there's a chance the changes made it to disk

 atomicity: none of its changes take effect

• also used when a transaction is rolled back

• In order for recovery to work, need to maintain enough state
about txns to be able to redo or undo them.

• The log is a file that stores the info. needed for recovery.

• It contains:

• update records,
each of which
summarizes a write

• records for transaction
begin and commit

• It does not record reads.

• don’t affect the state
of the database

• aren’t relevant to recovery

• The log is append-only: records are added at the end,
and blocks of the log file are written to disk sequentially.

• more efficient than non-sequential writes to the database files

Logging

record contentsLSN

txn: 1; BEGIN100

txn: 1; item: D1; old: 3000; new: 2500150

txn: 1; item: D2; old: 1000; new: 1500225

txn: 2; BEGIN350

txn: 2; item: D3; old: 7200; new: 6780 400

txn: 1; item: D1; old: 2500; new: 2750470

txn: 1; COMMIT550

txn: 2; item: D2; old: 1500; new: 1300585

txn: 2; item: D3; old: 6780; new: 6760675

• Both updated database pages and log records are cached.

• It’s important that they go to disk in a specific order.

• Example of what can go wrong:

• assume that:

• write(balance1 - 500) made it to disk

• write(balance2 + 500) didn't make it to disk

• neither of the corresponding log records made it to disk

• the database is in an inconsistent state

• without the log records, the recovery system can't restore it

read balance1
write(balance1 - 500)
read balance2
write(balance2 + 500)
CRASH

Write-Ahead Logging (WAL)

• The write-ahead logging (WAL) policy:

before a modified database page is written to disk,
all update log records describing changes on that page
must be forced to disk

• the log records are "written ahead" of the database page

• This ensures that the recovery system can restore the database
to a consistent state.

Write-Ahead Logging (WAL) (cont.)

• Update log records must include both the old and new values
of the changed data element.

• Example log after a crash:

• the database could be in
an inconsistent state

• why?
some of T1’s changes
may not have made it
to disk.
need to redo

• some of T2’s changes
may have made it to
disk.
need to undo

Undo-Redo Logging

record contentsLSN

txn: 1; BEGIN100

txn: 1; item: D1; old: 3000; new: 2500150

txn: 1; item: D2; old: 1000; new: 1500225

txn: 2; BEGIN350

txn: 2; item: D3; old: 7200; new: 6780 400

txn: 1; item: D1; old: 2500; new: 2750470

txn: 1; item: D2; old: 1500; new: 2100500

txn: 1; COMMIT550

txn: 2; item: D2; old: 1500; new: 1300585

txn: 2; item: D3; old: 6780; new: 6760675

• To ensure that it can undo/redo txns as needed,
undo-redo logging follows the WAL policy.

• In addition, it does the following when a transaction commits:

1. writes the commit log record to the in-memory log buffer

2. forces to disk all dirty log records
(dirty = not yet written todisk)

• It does not force the dirty database pages to disk.

• At recovery, it performs two passes:

• first, a backward pass to undo uncommitted transactions

• then, a forward pass to redo committed transactions

Undo-Redo Logging (cont.)

• Backward pass: begin at the last log record and scan backward

• for each commit record, add the txn to a commit list

• for each update by a txn not on the commit list,
undo the update (restoring the old value)

• for now, we skip:

• updates by txns that are on the commit list

• all begin records

• Forward pass:

• for each update by a txn that is on the commit list,
redo the update (writing the new value)

• skip updates by txns that are not on the commit list,
because they were handled on the backward pass

• skip other records as well

Recovery Using Undo-Redo Logging

• Here’s how it would work on our earlier example:

• Recovery restores the database to a consistent state
that reflects:

• all of the updates by txn 1 (which committed before the crash)

• none of the updates by txn 2 (which did not commit)

forward passbackward passrecord contentsLSN

skipskiptxn: 1; BEGIN100

redo: D1 = 2500skiptxn: 1; item: D1; old: 3000; new: 2500150

redo: D2 = 1500skiptxn: 1; item: D2; old: 1000; new: 1500225

skipskiptxn: 2; BEGIN350

skipundo: D3 = 7200txn: 2; item: D3; old: 7200; new: 6780 400

redo: D1 = 2750skiptxn: 1; item: D1; old: 2500; new: 2750470

redo: D2 = 2100skiptxn: 1; item: D2; old: 1500; new: 2100500

skipadd to commit list txn: 1; COMMIT550

skipundo: D2 = 1500txn: 2; item: D2; old: 1500; new: 1300585

skipundo: D3 = 6780txn: 2; item: D3; old: 6780; new: 6760675

Recovery Using Undo-Redo Logging (cont.)

1) Scanning backward at the start of recovery provides
the info needed for undo / redo decisions.

• when we see an update, we already know whether
the txn has committed!

forward passbackward passrecord contentsLSN

skipskiptxn: 1; BEGIN100

redo: D1 = 2500skiptxn: 1; item: D1; old: 3000; new: 2500150

redo: D2 = 1500skiptxn: 1; item: D2; old: 1000; new: 1500225

skipskiptxn: 2; BEGIN350

skipundo: D3 = 7200txn: 2; item: D3; old: 7200; new: 6780 400

redo: D1 = 2750skiptxn: 1; item: D1; old: 2500; new: 2750470

redo: D2 = 2100skiptxn: 1; item: D2; old: 1500; new: 2100500

skipadd to commit list txn: 1; COMMIT550

skipundo: D2 = 1500txn: 2; item: D2; old: 1500; new: 1300585

skipundo: D3 = 6780txn: 2; item: D3; old: 6780; new: 6760675

The Details Matter!

2) To ensure the correct values are on disk after recovery, we:

• put all redos after all undos (consider D2 above)

• perform the undos in reverse order (consider D3 above)

• perform the redos in the same order as the original updates
(consider D1 above)

forward passbackward passrecord contentsLSN

skipskiptxn: 1; BEGIN100

redo: D1 = 2500skiptxn: 1; item: D1; old: 3000; new: 2500150

redo: D2 = 1500skiptxn: 1; item: D2; old: 1000; new: 1500225

skipskiptxn: 2; BEGIN350

skipundo: D3 = 7200txn: 2; item: D3; old: 7200; new: 6780 400

redo: D1 = 2750skiptxn: 1; item: D1; old: 2500; new: 2750470

redo: D2 = 2100skiptxn: 1; item: D2; old: 1500; new: 2100500

skipadd to commit list txn: 1; COMMIT550

skipundo: D2 = 1500txn: 2; item: D2; old: 1500; new: 1300585

skipundo: D3 = 6780txn: 2; item: D3; old: 6780; new: 6760675

The Details Matter!

• We’ve assumed that update records store the old + new values
of the changed data element.

• It’s also possible to use logical logging, which stores
a logical description of the update operation.

• example: increment D1 by 1

• Logical logging is especially useful when we use pages or blocks
as data elements, rather than records.

• storing the old and new contents of a page or block
would take up a lot of space

• instead, store a logical description

• for example: "add record r somewhere on D1"

Logical Logging

• When we store old and new data values, the associated
undo/redo operations are idempotent .

• can be performed multiple times without changing the result

• Problem: logical update operations may not be idempotent.

• example: if "increment D1 by 1" has already been performed,
we don't want to redo it

• example: if "increment D1 by 1" has not been performed,
we don't want to undo it

• example: if "add record r to page D1" has already been
performed, we don't want to redo it

• To ensure that only the necessary undo/redos are made,
the DBMS makes use of the log sequence numbers (LSNs)
associated with the update log records.

Logical Logging (cont.)

• When a data element is updated, the DBMS:

• stores the LSN of the update log record with the data element

• known as the datum LSN

• stores the old LSN of the data element in the log record

Storing LSNs with Data Elements

D3D2D1record contentsLSN
"moo" / 0"oh" / 0"foo" / 0txn: 1; BEGIN100

"bar"/ 150txn: 1; item: D1; new: "bar"; old: "foo"; olsn: 0150

log file data elements (value / datum LSN)

• During recovery, there are
three LSNs to consider
for each update record:

1) the record LSN: the one
for the update record itself

record contentsLSN
txn: 3; BEGIN700

txn: 3; item: D5; old: "foo";
new: "bar"; olsn: 0

770

txn: 4; BEGIN825

txn: 4; item: D4; old: 9000;
new: 8500; olsn: 0

850

txn: 4; item: D6; old: 5.7;
new: 8.9; olsn: 0

900

txn: 3; item: D7; old: "zoo";
new: "cat"; olsn: 0

930

txn: 4; COMMIT980

txn: 3; item: D4; old: 8500;
new: 7300; olsn: 850

1000

txn: 3; item: D6; old: 8.9;
new: 4.1; olsn: 900

1100

Recovery Using LSNs

• During recovery, there are
three LSNs to consider
for each update record:

1) the record LSN: the one
for the update record itself

2) the on-disk datum LSN
for the data item

• the one associated with it
in the database file

record contentsLSN
txn: 3; BEGIN700

txn: 3; item: D5; old: "foo";
new: "bar"; olsn: 0

770

txn: 4; BEGIN825

txn: 4; item: D4; old: 9000;
new: 8500; olsn: 0

850

txn: 4; item: D6; old: 5.7;
new: 8.9; olsn: 0

900

txn: 3; item: D7; old: "zoo";
new: "cat"; olsn: 0

930

txn: 4; COMMIT980

txn: 3; item: D4; old: 8500;
new: 7300; olsn: 850

1000

txn: 3; item: D6; old: 8.9;
new: 4.1; olsn: 900

1100

Recovery Using LSNs

on-disk datum LSNs:
D4: 0, D5: 0, D6: 1100, D7: 930

• During recovery, there are
three LSNs to consider
for each update record:

1) the record LSN: the one
for the update record itself

2) the on-disk datum LSN
for the data item

• the one associated with it
in the database file

3) the olsn: the old datum LSN
for the data item

• the one associated with it
when the update was
originally requested

record contentsLSN
txn: 3; BEGIN700

txn: 3; item: D5; old: "foo";
new: "bar"; olsn: 0

770

txn: 4; BEGIN825

txn: 4; item: D4; old: 9000;
new: 8500; olsn: 0

850

txn: 4; item: D6; old: 5.7;
new: 8.9; olsn: 0

900

txn: 3; item: D7; old: "zoo";
new: "cat"; olsn: 0

930

txn: 4; COMMIT980

txn: 3; item: D4; old: 8500;
new: 7300; olsn: 850

1000

txn: 3; item: D6; old: 8.9;
new: 4.1; olsn: 900

1100

Recovery Using LSNs

on-disk datum LSNs:
D4: 0, D5: 0, D6: 1100, D7: 930

• During the backward pass,
we undo an update if:

• the txn did not commit

• datum LSN == record LSN

• When we undo, we also set:
datum LSN = olsn

record contentsLSN
txn: 3; BEGIN700

txn: 3; item: D5; old: "foo";
new: "bar"; olsn: 0

770

txn: 4; BEGIN825

txn: 4; item: D4; old: 9000;
new: 8500; olsn: 0

850

txn: 4; item: D6; old: 5.7;
new: 8.9; olsn: 0

900

txn: 3; item: D7; old: "zoo";
new: "cat"; olsn: 0

930

txn: 4; COMMIT980

txn: 3; item: D4; old: 8500;
new: 7300; olsn: 850

1000

txn: 3; item: D6; old: 8.9;
new: 4.1; olsn: 900

1100

The Backward Pass Using LSNs

on-disk datum LSNs:
D4: 0, D5: 0, D6: 1100, D7: 930

forward passbackward passrecord contentsLSN
txn: 3; BEGIN700

txn: 3; item: D5; old: "foo"; new: "bar"; olsn: 0770

txn: 4; BEGIN825

txn: 4; item: D4; old: 9000; new: 8500; olsn: 0850

txn: 4; item: D6; old: 5.7; new: 8.9; olsn: 0 900

txn: 3; item: D7; old: "zoo"; new: "cat"; olsn: 0930

txn: 4; COMMIT980

txn: 3; item: D4; old: 8500; new: 7300; olsn: 8501000

txn: 3; item: D6; old: 8.9; new: 4.1; olsn: 9001100

• datum LSNs: D4: 0, 850 D5: 0 D6: 1100, 900 D7: 930

Which updates will be undone?

forward passbackward passrecord contentsLSN
skiptxn: 3; BEGIN700

0 != 770
don't undo

txn: 3; item: D5; old: "foo"; new: "bar"; olsn: 0770

skiptxn: 4; BEGIN825

skiptxn: 4; item: D4; old: 9000; new: 8500; olsn: 0850

skiptxn: 4; item: D6; old: 5.7; new: 8.9; olsn: 0 900

930 == 930
undo: D7 = "zoo"
datum LSN = 0

txn: 3; item: D7; old: "zoo"; new: "cat"; olsn: 0930

add to
commit list

txn: 4; COMMIT980

0 != 1000
don't undo

txn: 3; item: D4; old: 8500; new: 7300; olsn: 8501000

1100 == 1100
undo: D6 = 8.9
datum LSN = 900

txn: 3; item: D6; old: 8.9; new: 4.1; olsn: 9001100

• datum LSNs: D4: 0, 850 D5: 0 D6: 1100, 900 D7: 930, 0

Which updates will be undone?

• During the forward pass,
we redo an update if:

• the txn did commit

• datum LSN == olsn

• When we redo, we also set:
datum LSN = record LSN

record contentsLSN
txn: 3; BEGIN700

txn: 3; item: D5; old: "foo";
new: "bar"; olsn: 0

770

txn: 4; BEGIN825

txn: 4; item: D4; old: 9000;
new: 8500; olsn: 0

850

txn: 4; item: D6; old: 5.7;
new: 8.9; olsn: 0

900

txn: 3; item: D7; old: "zoo";
new: "cat"; olsn: 0

930

txn: 4; COMMIT980

txn: 3; item: D4; old: 8500;
new: 7300; olsn: 850

1000

txn: 3; item: D6; old: 8.9;
new: 4.1; olsn: 900

1100

The Forward Pass Using LSNs

on-disk datum LSNs:
D4: 0, D5: 0, D6: 900, D7: 0

forward passbackward passrecord contentsLSN
skiptxn: 3; BEGIN700

0 != 770
don't undo

txn: 3; item: D5; old: "foo"; new: "bar"; olsn: 0770

skiptxn: 4; BEGIN825

skiptxn: 4; item: D4; old: 9000; new: 8500; olsn: 0850

skiptxn: 4; item: D6; old: 5.7; new: 8.9; olsn: 0 900

930 == 930
undo: D7 = "zoo"
datum LSN = 0

txn: 3; item: D7; old: "zoo"; new: "cat"; olsn: 0930

add to
commit list

txn: 4; COMMIT980

0 != 1000
don't undo

txn: 3; item: D4; old: 8500; new: 7300; olsn: 8501000

1100 == 1100
undo: D6 = 8.9
datum LSN = 900

txn: 3; item: D6; old: 8.9; new: 4.1; olsn: 9001100

• datum LSNs: D4: 0, 850 D5: 0 D6: 1100, 900 D7: 930, 0

Which updates will be redone?

forward passbackward passrecord contentsLSN
skipskiptxn: 3; BEGIN700

skip0 != 770
don't undo

txn: 3; item: D5; old: "foo"; new: "bar"; olsn: 0770

skipskiptxn: 4; BEGIN825

0 == 0
redo: D4 = 8500
datum LSN = 850

skiptxn: 4; item: D4; old: 9000; new: 8500; olsn: 0850

900 != 0
don't redo

skiptxn: 4; item: D6; old: 5.7; new: 8.9; olsn: 0 900

skip930 == 930
undo: D7 = "zoo"
datum LSN = 0

txn: 3; item: D7; old: "zoo"; new: "cat"; olsn: 0930

skipadd to
commit list

txn: 4; COMMIT980

skip0 != 1000
don't undo

txn: 3; item: D4; old: 8500; new: 7300; olsn: 8501000

skip1100 == 1100
undo: D6 = 8.9
datum LSN = 900

txn: 3; item: D6; old: 8.9; new: 4.1; olsn: 9001100

• datum LSNs: D4: 0, 850 D5: 0 D6: 1100, 900 D7: 930, 0

Which updates will be redone?

• As a DBMS runs, the log gets longer and longer.

• thus, recovery could end up taking a very long time!

• To avoid long recoveries, periodically perform a checkpoint.

• force data and log records to disk to create a
consistent on-disk database state

• during recovery, don’t need to consider operations
that preceded this consistent state

Checkpoints

• Stop activity and wait for a consistent state.

1) prohibit new transactions from starting and wait until all
current transactions have aborted or committed.

• Once there is a consistent state:

2) force all dirty log records to disk
(dirty = not yet written to disk)

3) force all dirty database pages to disk

4) write a checkpoint record to the log

• these steps must be performed in the specified order!

• When performing recovery, go back to the most recent
checkpoint record.

• Problem with this approach?

Static Checkpoints

• Don’t stop and wait for a consistent state.
Steps:

1) prevent all update operations

2) force all dirty log records to disk

3) force all dirty database pages to disk

4) write a checkpoint record to the log

• include a list of all active txns

• When performing recovery:
• backward pass: go back until you’ve seen the start records

of all uncommitted txns in the most recent checkpoint record

• forward pass: begin from the log record that comes after
the most recent checkpoint record. why?

• note: if all txns in the checkpoint record are on the commit list,
we stop the backward pass at the checkpoint record

Dynamic Checkpoints

• Initial datum LSNs: D4: 110 D5: 140,0 D6: 80

Could D4 have a datum LSN of less than 110?

forward passbackward passrecord contentsLSN
txn: 1; BEGIN100

txn: 1; item: D4; old: 20; new: 15; olsn: 0110

stop heretxn: 2; BEGIN120

add to
commit list

txn: 1; COMMIT130

undo: D5 = 12
datum LSN = 0

txn: 2; item: D5; old: 12; new: 13; olsn: 0 140

note active txns CHECKPOINT (active txns = 2)150

start here
skip

don’t undotxn: 2; item: D4; old: 15; new: 50; olsn: 110160

skipskiptxn: 3; BEGIN170

skipdon’t undotxn: 3; item: D6; old: 6; new: 8; olsn: 80180

Example of Recovery with Dynamic Checkpoints

• Only store the info. needed to undo txns.

• update records include only the old value

• Like undo-redo logging, undo-only logging follows WAL.

• In addition, all database pages changed by a transaction must be
forced to disk before allowing the transaction to commit. Why?

• At transaction commit:

1. force all dirty log records to disk

2. force database pages changed by the txn to disk

3. write the commit log record

4. force the commit log record to disk

• During recovery, the system only performs the backward pass.

Undo-Only Logging

• Only store the info. needed to redo txns.

• update records include only the new value

• Like the other two schemes, redo-only logging follows WAL.

• In addition, all database pages changed by a txn are held in
memory until it commits and its commit record is forced to disk.

• At transaction commit:

1. write the commit log record

2. force all dirty log records to disk

(changed database pages are allowed to go to disk anytime after this)

• If a transaction aborts, none of its changes can be on disk.

• During recovery, perform the backward pass to build the commit
list (no undos). Then perform the forward pass as in undo-redo.

Redo-Only Logging

• Factors to consider in the comparison:

• complexity/efficiency of recovery

• size of the log files

• what needs to happen when a txn commits

• other restrictions that a logging scheme imposes
on the system

• We'll list advantages and disadvantages of each scheme.

• Undo-only:

+ smaller logs than undo-redo

+ simple and quick recovery procedure (only one pass)

– forces log and data to disk at commit;
have to wait for the I/Os

Comparing the Three Logging Schemes

• Redo-only:

+ smaller logs than undo-redo

+/ – recovery: more complex than undo-only, less than undo-redo

– must be able to cache all changes until the txn commits

• limits the size of transactions

• constrains the replacement policy of the cache

+ forces only log records to disk at commit

• Undo-redo:

– larger logs

– more complex recovery

+ forces only log records to disk at commit

+ don’t need to retain all data in the cache until commit

Comparing the Three Logging Schemes (cont.)

• Why is each type needed?
• assume undo-redo logging

• update records: hold the info. needed to undo/redo changes

• commit records: allow us to determine which changes should be
undone and which should be redone

• begin records: allow us to determine the extent of the backward
pass in the presence of dynamic checkpoints

• checkpoint records: limit the amount of the log that is processed
during recovery

Reviewing the Log Record Types

• Recall the three logging schemes:
• undo-redo, undo-only, redo-only

• What type of logging is being
used to create the log at right?

record contentsLSN
txn: 1; BEGIN100

txn: 1; item: D1; old: 45210

txn: 2; BEGIN300

txn: 2; item: D2; old: 80 420

txn: 2; item: D3; old: 30500

txn: 2; COMMIT525

txn: 1; item: D3; old: 60 570

Review Problem
txn 1
writes 75 for D1
writes 90 for D3

txn 2
writes 25 for D2
writes 60 for D3

• Recall the three logging schemes:
• undo-redo, undo-only, redo-only

• What type of logging is being
used to create the log at right?
undo-only

• To make the rest of the problem
easier, add the new values to
the log…

Review Problem
txn 1
writes 75 for D1
writes 90 for D3

txn 2
writes 25 for D2
writes 60 for D3

record contentsLSN
txn: 1; BEGIN100

txn: 1; item: D1; old: 45; new: 75210

txn: 2; BEGIN300

txn: 2; item: D2; old: 80; new: 25420

txn: 2; item: D3; old: 30; new: 60500

txn: 2; COMMIT525

txn: 1; item: D3; old: 60; new: 90570

• Recall the three logging schemes:
• undo-redo, undo-only, redo-only

• At the start of recovery, what are
the possible on-disk values
under undo-only?

in-memory possible on-disk
D1:

D2:

D3:

Review Problem
txn 1
writes 75 for D1
writes 90 for D3

txn 2
writes 25 for D2
writes 60 for D3

record contentsLSN
txn: 1; BEGIN100

txn: 1; item: D1; old: 45; new: 75210

txn: 2; BEGIN300

txn: 2; item: D2; old: 80; new: 25 420

txn: 2; item: D3; old: 30; new: 60500

txn: 2; COMMIT525

txn: 1; item: D3; old: 60; new: 90 570

• does not pin values in memory
 may go to disk at any time

• at commit, forces dirty data
values to disk
 older values are no longer

possible

• Recall the three logging schemes:
• undo-redo, undo-only, redo-only

• At the start of recovery, what are
the possible on-disk values
under redo-only?

in-memory possible on-disk
D1:

D2:

D3:

Review Problem
txn 1
writes 75 for D1
writes 90 for D3

txn 2
writes 25 for D2
writes 60 for D3

record contentsLSN
txn: 1; BEGIN100

txn: 1; item: D1; old: 45; new: 75210

txn: 2; BEGIN300

txn: 2; item: D2; old: 80; new: 25 420

txn: 2; item: D3; old: 30; new: 60500

txn: 2; COMMIT525

txn: 1; item: D3; old: 60; new: 90 570

• does pin values in memory
 can't go to disk until commit

• at commit, unpins values
but does not force them to disk
 older values are still

possible

• Recall the three logging schemes:
• undo-redo, undo-only, redo-only

• At the start of recovery, what are
the possible on-disk values
under undo-redo?

in-memory possible on-disk
D1:

D2:

D3:

Review Problem
txn 1
writes 75 for D1
writes 90 for D3

txn 2
writes 25 for D2
writes 60 for D3

record contentsLSN
txn: 1; BEGIN100

txn: 1; item: D1; old: 45; new: 75210

txn: 2; BEGIN300

txn: 2; item: D2; old: 80; new: 25 420

txn: 2; item: D3; old: 30; new: 60500

txn: 2; COMMIT525

txn: 1; item: D3; old: 60; new: 90570

• does not pin values in memory
 may go to disk at any time

• at commit, does not force dirty
data to disk
 older values are still

possible

• In a centralized database, logging and recovery are enough
to ensure atomicity.

• if a txn's commit record makes it to the log,
all of its changes will eventually take effect

• if a txn's commit record isn't in the log when a crash occurs,
none of its changes will remain after recovery

• What about atomicity in a distributed database?

Atomicity

Recall: Distributed Transactions

• A distributed transaction involves data stored at multiple sites.

• One of the sites serves as the coordinator of the transaction.

• The coordinator divides a distributed transaction into
subtransactions, each of which executes on one of the sites.

read balance1
write(balance1 - 500)
read balance2
write(balance2 + 500)

read balance1
write(balance1 - 500)

read balance2
write(balance2 + 500)

subtxn 1-1

subtxn 1-2

txn 1

• In a distributed database:

• each site performs local logging and recovery of its subtxns

• that alone is not enough to ensure atomicity

• The sites must coordinate to ensure that either:

• all of the subtxns are committed
or

• none of them are

Distributed Atomicity

Distributed Atomicity (cont.)

• Example of what could go wrong:

• a subtxn at one of the sites deadlocks and is aborted

• before the coordinator of the txn finds out about this,
it tells the other sites to commit, and they do so

• Another example:

• the coordinator notifies the other sites that it's time to commit

• most of the sites commit their subtxns

• one of the sites crashes before committing

Two-Phase Commit (2PC)

• A protocol for deciding whether to commit a distributed txn.

• Basic idea:

• coordinator asks sites if they're ready to commit

• if a site is ready, it:

1. prepares its subtxn – putting it in the ready state

2. tells the coordinator it's ready

• if all sites say they're ready, all subtxns are committed

• otherwise, all subtxns are aborted (i.e., rolled back)

• Preparing a subtxn means ensuring it can be either
committed or rolled back – even after a failure.

• need to at least…

• some logging schemes need additional steps

• After saying it's ready, a site must wait to be told what to do next.

2PC Phase I: Prepare

• When it's time to commit a distributed txn T, the coordinator:

• force-writes a prepare record for T to its own log

• sends a prepare message to each participating site

• If a site can commit its subtxn, it:

• takes the steps needed to put its txn in the ready state

• force-writes a ready record for T to its log

• sends a ready message for T to the coordinator and waits

• If a site needs to abort its subtxn, it:

• force-writes a do-not-commit record for T to its log

• sends a do-not-commit message for T to the coordinator

• can it abort the subtxn now?

• Note: we always log a message before sending it to others.
• allows the decision to send the message to survive a crash

2PC Phase II: Commit or Abort

• The coordinator reviews the messages from the sites.

• if it doesn't hear from a site within some time interval,
it assumes a do-not-commit message

• If all sites sent ready messages for T, the coordinator:

• force-writes a commit record for T to its log

• T is now officially committed

• sends commit messages for T to the participating sites

• Otherwise, the coordinator:

• force-writes an abort record for T to its log

• sends abort messages for T to the participating sites

• Each site:

• force-writes the appropriate record (commit or abort) to its log

• commits or aborts its subtxn as instructed

2PC State Transitions

• A subtxn can enter the aborted state from the initial state at
any time.

• After entering the ready state, it can only enter the aborted state
after receiving an abort message.

• A subtxn can only enter the committed state from the ready state,
and only after receiving a commit message.

initial

committedaborted

ready

prepare msg received; log records flushed

commit msg
received

abort msg
received

Recovery When Using 2PC

• When a site recovers, its decides whether to undo or redo
its subtxn for a txn T based on the last record for T in its log.

• Case 1: the last log record for T is a commit record.

• redo the subtxn's updates as needed

• Case 2: the last log record for T is an abort record.

• undo the subtxn's updates as needed

• Case 3: the last log record for T is a do-not-commit record.

• undo the subtxn's updates as needed

• why is this correct?

Recovery When Using 2PC (cont.)

• Case 4: the last log record for T is from before 2PC began
(e.g., an update record).

• undo the subtxn's updates as needed

• this works in both of the possible situations:

• 2PC has already completed without hearing from this site
why?

• 2PC is still be going on
why?

• Case 5: the last log record for T is a ready record.

• contact the coordinator (or another site) to determine T's fate

• why can the site still commit or abort T as needed?

• if it can't reach another site, it must block until it can reach one!

What if the Coordinator Fails?

• The other sites can either:

• wait for the coordinator to recover

• elect a new coordinator

• In the meantime, each site can determine the fate of any
current distributed transactions.

• Case 1: a site has not received a prepare message for txn T

• can abort its subtxn for T

• preferable to waiting for the coordinator to recover,
because it allows the T's fate to be decided

• Case 2: a site has received a prepare message for T,
but has not yet sent ready message

• can also abort its subtxn for T now. why?

What if the Coordinator Fails? (cont.)

• Case 3: a site sent a ready message for T but didn't hear back

• poll the other sites to determine T's fate

evidence conclusion/action

at least one site has ???
a commit record for T

at least one site has ???
an abort record for T

no commit/abort records for T; ???
at least one site does not have
a ready record for T

no commit/abort records for T; can't know T's fate unless
all surviving sites have coordinator recovers. why?
ready records for T

• What type of logging is being
used to create the log at right?

• At the start of recovery, what are
the possible on-disk values?

Extra Practice

record contentsLSN
txn: 1; BEGIN100

txn: 1; item: D1; new: 2500150

txn: 2; BEGIN350

txn: 2; item: D2; new: 6780 400

txn: 1; item: D1; new: 2750470

txn: 1; COMMIT550

txn: 2; item: D1; new: 1300585

original values:
D1=1000, D2=3000

• What if the DBMS were using
undo-only logging instead?

• At the start of recovery, what are
the possible on-disk values?

in-memory possible on-disk
D1: 1000

D2: 3000

Extra Practice

record contentsLSN
txn: 1; BEGIN100

txn: 1; item: D1; new: 2500150

txn: 2; BEGIN350

txn: 2; item: D2; new: 6780 400

txn: 1; item: D1; new: 2750470

txn: 1; COMMIT550

txn: 2; item: D1; new: 1300585

original values:
D1=1000, D2=3000

• What if the DBMS were using
undo-redo logging instead?

• At the start of recovery, what are
the possible on-disk values?

in-memory possible on-disk
D1: 1000

D2: 3000

Extra Practice

record contentsLSN
txn: 1; BEGIN100

txn: 1; item: D1; new: 2500150

txn: 2; BEGIN350

txn: 2; item: D2; new: 6780 400

txn: 1; item: D1; new: 2750470

txn: 1; COMMIT550

txn: 2; item: D1; new: 1300585

original values:
D1=1000, D2=3000

