
NoSQL Databases

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

The Rise of NoSQL

• Beginning in the early 2000s, web-based applications
increasingly needed to deal with massive amounts of:

• data

• traffic / queries

• Scalability is crucial.

• load can increase rapidly and unpredictably

• Large servers are expensive and can only grow so large.

• Solution: use clusters of small commodity machines

• use both fragmentation/sharding and replication

• cheaper

• greater overall reliability

• can take advantage of cloud-based storage

The Rise of NoSQL (cont.)

• Problem: Relational DBMSs do not scale well to large clusters.

• Google and Amazon each developed their own alternative
approaches to data management on clusters.

• Google: BigTable

• Amazon: DynamoDB

• The papers that Google and Amazon published about their
efforts got others interested in developing similar DBMSs.

 noSQL

What Does NoSQL Mean?

• Not well defined.

• Typical characteristics of NoSQL DBMSs:

• don't use SQL / the relational model

• open-source

• designed for use on clusters

• support for sharding/fragmentation and replication

• schema-less or flexible schema

• One good overview:

Sadalage and Fowler, NoSQL Distilled
(Addison-Wesley, 2013).

Flavors of NoSQL

• Various taxonomies have been proposed

• Three of the main classes of NoSQL databases are:

• key-value stores

• document databases

• column-family (aka big-table) stores

• Some people also include graph databases.

• very different than the others

• example: they are not designed for clusters

Key-Value Stores

• We've already worked with one of these: Berkeley DB

• Simple data model: key/value pairs

• the DBMS does not attempt to interpret the value

• Queries are limited to query by key.

• get/put/update/delete a key/value pair

• iterate over key/value pairs

Document Databases

• Also store key/value pairs

• Unlike key-value stores, the value is not opaque.

• it is a document containing semistructured data

• it can be examined and used by the DBMS

• Queries:

• can be based on the key (as in key/value stores)

• more often, are based on the contents of the document

• Here again, there is support for sharding and replication.

• the sharding can be based on values within the document

Column-Family Databases

• Google's BigTable and systems based on it

• To understand the motivation behind their design,
consider one type of problem BigTable was designed to solve:

• You want to store info about web pages!

• For each URL, you want to store:

• its contents

• its language

• for each other page that links to it, the anchor text
associated with the link (i.e., the text that you click on)

Storing Web-Page Data in a Traditional Table

• One row per web page

• Single columns for its language and contents

• One column for the anchor text from each possible page,
since in theory any page could link to any other page!

• Leads to a huge sparse table – most cells are empty/unused.

one col per pageanchor from
www.bu.edu

anchor text from
www.cnn.com

contentslanguagepage URL

…<html>…Englishwww.cnn.com

…<html>…Englishwww.bu.edu

…"news story"<html>…Englishwww.nytimes.com

…"French elections"<html>…Frenchwww.lemonde.fr

……
…

Storing Web-Page Data in BigTable

• Rather than defining all possible columns, define a set of
column families that each row should have.

• example: a column family called anchor that replaces
all of the separate anchor columns on the last slide

• can also have column families that are like typical columns

• In a given row, only store columns with an actual value,
representing them as (column key, value) pairs

• column key = column family:qualifier

• ex: ("anchor:www.bu.edu", "news story")

column key

column
family

qualifier value

Data Model for Column-Family Databases

• Different rows can have different schema.

• i.e., different sets of column keys

• (column key, value) pairs can be added or removed
from a given row over time

• The set of column families in a given table rarely change.

Advantages of Column Families

• Gives an additional unit of data, beyond just a single row.

• Can be used for access controls.

• restrict an application to only certain column families

• Column families can be divided up into locality groups that are
stored together.

• based on which column families are typically accessed
together

• advantage?

Aggregate Orientation

• Key-value, document, and column-family stores all lend
themselves to an aggregate-oriented approach.

• group together data that "belongs" together

• i.e., that will tend to be accessed together

• Relational databases can't fully support aggregation.

• no multi-valued attributes; focus on avoiding duplicated data

• give each type of entity its own table, rather than grouping
together entities/attributes that are accessed together

unit of aggregationtype of database

the value part of the key/value pairkey-value store

a documentdocument database

a row
(plus column-family sub-aggregates)

column-family store

Aggregate Orientation (cont.)

• Example: data about customers

• RDBMS: store a customer's address in only one table

• use foreign keys in other tables that refer to the address

• aggregate-oriented system: store the full customer address
in several places:

• customer aggregates

• order aggregates

• etc.

• Benefits of an aggregate-based approach in a NoSQL store:

• provides a unit for sharding across the cluster

• allows us to get related data without needing to access
many different nodes

Schemalessness

• NoSQL systems are completely or mostly schemaless.

• Key-value stores: put whatever you like in the value

• Document databases: no restrictions on the schema used by
the semistructured data inside each document.

• although some do allow a schema, as with XML

• Column-family databases:

• we do specify the column families in a given table

• but no restrictions on the columns in a given column family
and different rows can have different columns

Schemalessness (cont.)

• Advantages:

• allows the types of data that are stored to evolve over time

• makes it easier to handle nonuniform data

• e.g., sparse tables

• Despite the fact that a schema is not required,
programs that use the data need at least an implicit schema.

• Disadvantages of an implicit schema:

• the DBMS can't enforce it

• the DBMS can't use it to try to make accesses more efficient

• different programs that access the same database
can have conflicting notions of the schema

Example Document Database: MongoDB

• Mongo (from humongous)

• Key features include:

• replication for high availability

• auto-sharding for scalability

• documents are expressed using JSON/BSON

• queries can be based on the contents of the documents

• Related documents are grouped together into collections.

• what does this remind you of?

JSON

• JSON is an alternative data model for semistructured data.

• JavaScript Object Notation

• Built on two key structures:

• an object, which is a sequence of fields (name:value pairs)

{ id: "1000",
name: "Sanders Theatre",
capacity: 1000 }

• an array of values

["123-456-7890", "222-222-2222", "333-333-3333"]

• A value can be:

• an atomic value: string, number, true, false, null

• an object

• an array

Example: JSON Object for a Person

{ firstName: "John",
lastName: "Smith",
age: 25,
address: {

streetAddress: "21 2nd Street",
city: "New York",
state: "NY",
postalCode: "10021"

},
phoneNumbers: [

{ type: "home",
number: "212-555-1234"

},
{ type: "mobile",

number: "646-555-4567"
}

]
}

BSON

• MongoDB actually uses BSON.

• a binary representation of JSON

• BSON = marshalled JSON!

• BSON includes some additional types that are not part of JSON.

• in particular, a type called ObjectID for unique id values.

• Each MongoDB document is a BSON object.

The _id Field

• Every MongoDB document must have an _id field.

• its value must be unique within the collection

• acts as the primary key of the collection

• it is the key in the key/value pair

• If you create a document without an _id field:

• MongoDB adds the field for you

• assigns it a unique BSON ObjectID

MongoDB Terminology

• Documents in a given collection typically have a similar purpose.

• However, no schema is enforced.

• different documents in the same collection
can have different fields

MongoDB equivalentrelational term

databasedatabase

collectiontable

documentrow

fields (name:value pairs)attributes

the _id field, which is the key
associated with the document

primary key

Data Modeling in MongoDB

• Need to determine how to map

entities and relationships collections of documents

• Could in theory give each type of entity:

• its own (flexibly formatted) type of document

• those documents would be stored in the same collection

• However, recall that NoSQL models allow for aggregates
in which different types of entities are grouped together.

• Determining what the aggregates should look like
involves deciding how we want to represent relationships.

Capturing Relationships in MongoDB

• Two options:

1. store references to other documents using their _id values

source: docs.mongodb.org/manual/core/ data-model-design

• where have we seen this before?

Capturing Relationships in MongoDB (cont.)

• Two options (cont.):

2. embed documents within other documents

source: docs.mongodb.org/manual/core/ data-model-design

• where have we seen this before?

Factors Relevant to Data Modeling

• A given MongoDB query can only access a single collection.

• joins of documents are not supported

• need to issue multiple requests

 group together data that would otherwise need to be joined

• Atomicity is only provided for operations on a single document
(and its embedded subdocuments).

 group together data that needs to be updated as part of
single logical operation (e.g., a balance transfer!)

 group together data items A and B if A's current value
affects whether/how you update B

Factors Relevant to Data Modeling (cont.)

• If an update makes a document bigger than the space
allocated for it on disk, it may need to be relocated.

• slows down the update, and can cause disk fragmentation

• MongoDB adds padding to documents to reduce the
need for relocation

 use references if embedded documents could lead to
significant growth in the size of the document over time

Factors Relevant to Data Modeling

• Pluses and minuses of embedding (a partial list):

+ need to make fewer requests for a given logical operation

+ less network/disk I/O

+ enables atomic updates

– duplication of data

– possibility for inconsistencies between different copies
of duplicated data

– can lead documents to become very large,
and to document relocation

• Pluses and minuses of using references:

• take the opposite of the pluses and minuses of the above!

+ allow you to capture more complicated relationships

• ones that would be modelled using graphs

Data Model for the Movie Database

• Recall our movie database from PS 1.
Person(id, name, dob, pob)
Movie(id, name, year, rating, runtime, genre, earnings_rank)
Oscar(movie_id, person_id, type, year)
Actor(actor_id, movie_id)
Director(director_id, movie_id)

• Three types of entities: movies, people, oscars

• Need to decide how we should capture the relationships

• between movies and actors

• between movies and directors

• between Oscars and the associated people and movies

Data Model for the Movie Database (cont.)

• Assumptions about the relationships:

• there are only one or two directors per movie

• there are approx. five actors associated with each movie

• the number of people associated with a given movie is fixed

• each Oscar has exactly one associated movie
and at most one associated person

• Assumptions about the queries:

• Queries that involve both movies and people usually involve
only the names of the people, not their other info.

common: Who directed Avatar?
common: Which movies did Tom Hanks act in?
less common: Which movies have actors from Boston?

• Queries that involve both Oscars and other entities usually
involve only the name(s) of the person/movie.

Data Model for the Movie Database (cont.)

• Given our assumptions, we can take a hybrid approach
that includes both references and embedding.

• Use three collections: movies, people, oscars

• Use references as follows:

• in movie documents, include ids of the actors and directors

• in oscar documents, include ids of the person and movie

• Whenever we refer to a person or movie, we also
embed the associated entity's name.

• allows us to satisfy common queries like Who acted in…?

• For less common queries that involve info. from multiple
entities, use the references.

Data Model for the Movie Database (cont.)

• In addition, add two boolean fields to person documents:

• hasActed, hasDirected

• only include when true

• allows us to find all actors/directors that meet criteria
involving their pob/dob

• Note that most per-entity state appears only once,
in the main document for that entity.

• The only duplication is of people/movie names and ids.

Sample Movie Document

{ _id: "0499549",
name: "Avatar",
year: 2009,
rating: "PG-13",
runtime: 162,
genre: "AVYS",
earnings_rank: 1,
actors: [{ id: "0000244",

name: "Sigourney Weaver" },
{ id: "0002332",

name: "Stephen Lang" },
{ id: "0735442",

name: "Michelle Rodriguez" },
{ id: "0757855",

name: "Zoe Saldana" },
{ id: "0941777",

name: "Sam Worthington" }],
directors: [{ id: "0000116",

name: "James Cameron" }] }

Sample Person and Oscar Documents

{ _id: "0000059",
name: "Laurence Olivier",
dob: "1907-5-22",
pob: "Dorking, Surrey, England, UK",
hasActed: true,
hasDirected: true

}

{ _id: ObjectId("528bf38ce6d3df97b49a0569"),
year: 2013,
type: "BEST-ACTOR",
person: { id: "0000358",

name: "Daniel Day-Lewis" },
movie: { id: "0443272",

name: "Lincoln" }
}

Queries in MongoDB

• Each query can only access a single collection of documents.

• Use a method called db.collection.find()

db.collection.find(<selection>, <projection>)

• collection is the name of the collection

• <selection> is an optional document that specifies
one or more selection criteria

• omitting it (i.e., using an empty document {})
selects all documents in the collection

• <projection> is an optional document that specifies
which fields should be returned

• omitting it gets all fields in the document

• Example: find the names of all R-rated movies:

db.movies.find({ rating: "R" }, { name: 1 })

Comparison with SQL

• Example: find the names and runtimes of all R-rated movies
that were released in 2000.

• SQL:

SELECT name, runtime
FROM Movie
WHERE rating = 'R' and year = 2000;

• MongoDB:

db.movies.find({ rating: "R", year: 2000 },
{ name: 1, runtime: 1 })

Query Selection Criteria

db.collection.find(<selection>, <projection>)

• To find documents that match a set of field values,
use a selection document consisting of those name/value pairs
(see previous example).

• Operators for other types of comparisons:

MongoDB SQL equivalent
$gt, $gte >, >=
$lt, $lte <, <=
$ne !=

• Example: find all movies with an earnings rank <= 200

db.movies.find({ earnings_rank: { $lte: 200 }})

• Note that the operator is the field name of a subdocument.

Query Selection Criteria (cont.)

• Logical operators: $and, $or, $not, $nor

• take an array of selection subdocuments

• example: find all movies rated R or PG-13:

db.movies.find({ $or: [{ rating: "R" },
{ rating: "PG-13" }

]
})

• example: find all movies except those rated R or PG-13 :

db.movies.find({ $nor: [{ rating: "R" },
{ rating: "PG-13" }

]
})

Query Selection Criteria (cont.)

• To test for set-membership or lack thereof: $in, $nin

• example: find all movies rated R or PG-13:

db.movies.find({ rating: { $in: ["R", "PG-13"] }
})

• example: find all movies except those rated R or PG-13 :

db.movies.find({ rating: { $nin: ["R", "PG-13"] }
})

• note: $in/$nin is generally more efficient than $or/$nor

• To test for the presence/absence of a field: $exists

• example: find all movies with an earnings rank:

db.movies.find({ earnings_rank: { $exists: true }})

• example: find all movies without an earnings rank:

db.movies.find({ earnings_rank: { $exists: false }})

Logical AND

• You get an implicit logical AND by simply specifying a list
of fields.

• recall our previous example:

db.movies.find({ rating: "R", year: 2000 })

• example: find all R-rated movies shorter than 90 minutes:

db.movies.find({ rating: "R",
runtime: { $lt: 90 }

})

Logical AND (cont.)

• $and is needed if the subconditions involve the same field

• can't have duplicate field names in a given document

• Example: find all Oscars given in the 1990s.

• the following would not work:

db.oscars.find({ year: { $gte: 1990 },
year: { $lte: 1999 }

})

• one option that would work:

db.oscars.find({ $and: [{ year: { $gte: 1990 } },
{ year: { $lte: 1999 } }]

})

• another option: use an implicit AND on the operator subdocs:

db.oscars.find({ year: { $gte: 1990, $lte: 1999 }
})

Pattern Matching

• Use a regular expression surrounded with //

• example: find all people born in Boston

db.people.find({ pob: /*Boston,*/ })

• * is a wildcard character that acts like % in SQL

• We get a * by default on either end of the expression,
so we can do this instead:

db.people.find({ pob: /Boston,/ })

• To override the default * characters, use:
^ to require a match with the beginning of the value
$ to require a match with the end of the value

• /Boston,/ would match "South Boston, Mass"

• /^Boston,/ would not, because the ^ indicates "Boston"
must be at the start of the value

• /USA$/ requires "USA" to be at the end of the value

Query Practice Problem

• Recall our sample person document:

{ _id: "0000059",
name: "Laurence Olivier",
dob: "1907-5-22",
pob: "Dorking, Surrey, England, UK",
hasActed: true,
hasDirected: true

}

• How could we find all directors born in the UK? (Select all that
apply.)

A. db.people.find({ pob: /UK$/, hasDirected: true })

B. db.people.find({ pob: /UK$/,

hasDirected: { $exists: true }})

C. db.people.find({ pob: /UK/,

hasDirected: { $exists: true }})

D. db.people.find({ $pob: /UK/, $hasDirected: true })

Queries on Arrays/Subdocuments

• If a field has an array type

db.collection.find({ arrayField: val })

finds all documents in which val is at least one of the elements
in the array associated with arrayField

• Example: suppose that we stored a movie's genres as an array:

{ _id: "0317219", name: "Cars", year: 2006,
rating: "G", runtime: 124, earnings_rank: 80,

genre: ["N", "C", "F"], ...}

• to find all animated movies – ones with a genre of "N":

db.movies.find({ genre: "N"})

• Given that we actually store the genres as a single string
(e.g., "NCF"), how would we find animated movies?

Queries on Arrays/Subdocuments (cont.)

• Use dot notation to access fields within a subdocument,
or within an array of subdocuments:

• example: find all Oscars won by the movie Gladiator:

> db.oscars.find({ "movie.name": "Gladiator" })

{ _id: <ObjectID1>, year: 2001,
type: "BEST-PICTURE",
movie: { id: "0172495",

name: "Gladiator" }}
{ _id: <ObjectID2>, year: 2001,

type: "BEST-ACTOR",
movie: { id: "0172495",

name: "Gladiator" },
person: { id: "0000128",

name: "Russell Crowe" }}

• Note: When using dot notation, the field name must be
surrounded by quotes.

Queries on Arrays/Subdocuments (cont.)

• example: find all movies in which Tom Hanks has acted:

> db.movies.find({ "actors.name": "Tom Hanks"})

{ _id: "0107818", name: "Philadelphia", year: 1993,
rating: "PG-13", runtime: 125, genre: "D"
actors: [{ id: "0000158",

name: "Tom Hanks" },
{ id: "0000243",

name: "Denzel Washington" },
...

],
directors: [{ id: "0001129",

name: "Jonathan Demme" }]
}
{ _id: "0109830", name: "Forrest Gump", year: 1994,

rating: "PG-13", runtime: 142, genre: "CD"
actors: [{ id: "0000158",

name: "Tom Hanks" },
...

Projections

db.collection.find(<selection>, <projection>)

• The projection document is a list of fieldname:value pairs:

• a value of 1 indicates the field should be included

• a value of 0 indicates the field should be excluded

• Recall our previous example:

db.movies.find({ rating: "R", year: 2000 },

{ name: 1, runtime: 1 })

• Example: find all info. about R-rated movies except their genres:

db.movies.find({ rating: "R" }, { genre: 0 })

Projections (cont.)

• The _id field is returned unless you explicitly exclude it.

> db.movies.find({ rating: "R", year: 2011 },
{ name: 1 })

{ "_id" : "1411697", "name" : "The Hangover Part II" }
{ "_id" : "1478338", "name" : "Bridesmaids" }
{ "_id" : "1532503", "name" : "Beginners" }

> db.movies.find({ rating: "R", year: 2011 },
{ name: 1, _id: 0 })

{ "name" : "The Hangover Part II" }
{ "name" : "Bridesmaids" }
{ "name" : "Beginners" }

• A given projection should either have:

• all values of 1: specifying the fields to include

• all values of 0: specifying the fields to exclude

• one exception: specify fields to include, and exclude _id

Iterating Over the Results of a Query

• db.collection.find() returns a cursor that can be used
to iterate over the results of a query

• In the MongoDB shell, if you don't assign the cursor to a variable,
it will automatically be used to print up to 20 results.

• if more than 20, use the command it to continue the iteration

• Another way to view all of the result documents:

• assign the cursor to a variable:

var cursor = db.movies.find({ year: 2000 })

• use the following method call to print each result document
in JSON:

cursor.forEach(printjson)

Aggregation

• Recall the aggregate operators in SQL: AVG(), SUM(), etc.

• More generally, aggregation involves computing a result
from a collection of data.

• MongoDB supports two approaches to aggregation:

• single-purpose aggregation methods

• an aggregation pipeline

Single-Purpose Aggregation Methods

• db.collection.count(<selection>)

• returns the number of documents in the collection
that satisfy the specified selection document

• ex: how may R-rated movies are shorter than 90 minutes?

db.movies.count({ rating: "R",
runtime: { $lt: 90 }})

• db.collection.distinct(<field>, <selection>)

• returns an array with the distinct values of the specified field
in documents that satisfy the specified selection document

• if omit the selection, get all distinct values of that field

• ex: which actors have been in one or more of the
top 10 grossing movies?

db.movies.distinct("actors.name",
{ earnings_rank: { $lte: 10 }}

)

countDocuments is now
the preferred name

Aggregation Pipeline

• A more general-purpose and flexible approach to aggregation
is to use a pipeline of aggregation operations.

• Each stage of the pipeline:

• takes a set of documents as input

• applies a pipeline operator to those documents,
which transforms / filters / aggregates them in some way

• produces a new set of documents as output

• db.collection.aggregate(
{ <pipeline-op1>: <pipeline-expression1> },
{ <pipeline-op2>: <pipeline-expression2> },
...,
{ <pipeline-opN>: <pipeline-expressionN> })

full
collection

op1
results

op1 op2
results

op2 final
results

opN
…

Aggregation Pipeline Example

db.orders.aggregate(
{ $match: { status: "A" } },
{ $group: { _id: "$cust_id", total: { $sum: "$amount"} } }

)

source: docs.mongodb.org/manual/core/aggregation-pipeline

note: use $ before a field name to obtain its value

Pipeline Operators

• $project – include, exclude, rename, or create fields

• Example of a single-stage pipeline using $project:

db.people.aggregate(
{ $project: {

name: 1,
whereBorn: "$pob",
yearBorn: { $substr: ["$dob", 0, 4] }

}
})

• for each document in the people collection, extracts:

• name (1 = include, as in earlier projection documents)

• pob, which is renamed whereBorn

• a new field called yearBorn, which is derived
from the existing dob values (yyyy-m-d yyyy)

• the _id field, because we didn't exclude it

• note: use $ before a field name to obtain its value

Pipeline Operators (cont.)

• $group – like GROUP BY in SQL

$group: { _id: <field or fields to group by>,
<computed-field-1>,
..., <computed-field-N> }

• example: compute the number of movies with each rating

db.movies.aggregate(
{ $group: { _id: "$rating",

numMovies: { $sum: 1 }
} })

• { $sum: 1 } is equivalent to COUNT(*) in SQL

• for each document in a given subgroup,
adds 1 to that subgroup's value of the computed field

• can also sum values of a specific field (see earlier slide)

• $sum is one example of an accumulator

• others include: $min, $max, $avg, $addToSet

Pipeline Operators (cont.)

• $match – selects documents according to some criteria

$match: <selection>

where <selection> has identical syntax to the
selection documents used by db.collection.find()

• $unwind – takes a document with an array of values and creates
a separate document for each value in the array.

• see the next example

Example of a Three-Stage Pipeline

db.movies.aggregate(
{ $match: { year: 2013 }},
{ $project: { _id: 0,

movie: "$name",
actor: "$actors.name" } },

{ $unwind: "$actor" }
)

• What does each stage do?

• $match: select movies released in 2013

• $project: for each such movie, create a document with:
• no _id field

• the name field of the movie, but renamed movie

• the names of the actors (an array), as a field named actor

• $unwind: turn each movie's document into a set of
documents, one for each actor in the array of actors

Another Example: What does each stage do?

db.oscars.aggregate(
{ $match: { year: { $gte: 1980 } } },
{ $group: { _id: "$year", count: { $sum: 1 } } },
{ $match: { count: { $gt: 6 } } },
{ $project: { _id: 0, year: "$_id",

num_awards: "$count" } })

• first $match: select Oscars awarded in 1980 or later

• $group: take the Oscar docs selected by $match and:

• create subgroups based on year (as specified by _id field)

• for each subgroup, create a new doc with year as _id and
a count field with the num. of Oscars from that year

• second $match: select docs for years with more than 6 Oscars

• $project: for each such year, create a document with:

• no _id field

• the _id field produced by $group, but renamed year

• the count field produced by $group, renamed num_awards

More on Computing Aggregates

db.oscars.aggregate(
{ $match: { year: { $gte: 1980 } } },
{ $group: { _id: "$year", count: { $sum: 1 } } },
{ $match: { count: { $gt: 6 } } },
{ $project: { _id: 0, year: "$_id",

num_awards: "$count" } })

• The $group stage in the prior query computed a separate
count for each of several subgroups.

• This is comparable to using an aggregate function with
GROUP BY in SQL.

More on Computing Aggregates (cont.)

• What if we just want to compute a single count, average, etc.?

• example: find the average runtime of all R-rated movies.

• In SQL, we would do something like this (with no GROUP BY):

SELECT AVG(runtime)
FROM Movie
WHERE rating = 'R';

• In MongoDB, we still need a $group stage, but we group on
null in order to create a single group:

db.movies.aggregate(
{ $match: { rating: "R" } },
{ $group: { _id: null,

avg_runtime: { $avg: "$runtime" }} },
{ $project: { _id: 0, avg_runtime: 1 } }

)

Two Additional Pipeline Operators

• $sort – sorts documents according to one of the fields
{ $sort: { field1_to_sort_on: sort_order1,

field2_to_sort_on: sort_order2, …} }

• for sort_order, use 1 for ascending
-1 for descending

• $limit – include only the first n documents in a set of results

{ $limit: n }

• Example: Find the name and runtime of the movie with the
longest runtime:

db.movies.aggregate({ $sort: { runtime: -1 } },
{ $limit: 1 },
{ $project: { _id: 0,

name: 1,
runtime: 1 } })

• note: if 2 or more movies are tied, will only get one of them

Recall: Sample Movie Document

{ _id: "0499549",
name: "Avatar",
year: 2009,
rating: "PG-13",
runtime: 162,
genre: "AVYS",
earnings_rank: 1,
actors: [{ id: "0000244",

name: "Sigourney Weaver" },
{ id: "0002332",

name: "Stephen Lang" },
{ id: "0735442",

name: "Michelle Rodriguez" },
{ id: "0757855",

name: "Zoe Saldana" },
{ id: "0941777",

name: "Sam Worthington" }],
directors: [{ id: "0000116",

name: "James Cameron" }] }

Recall: Sample Person and Oscar Documents

{ _id: "0000059",
name: "Laurence Olivier",
dob: "1907-5-22",
pob: "Dorking, Surrey, England, UK",
hasActed: true,
hasDirected: true

}

{ _id: ObjectId("528bf38ce6d3df97b49a0569"),
year: 2013,
type: "BEST-ACTOR",
person: { id: "0000358",

name: "Daniel Day-Lewis" },
movie: { id: "0443272",

name: "Lincoln" }
}

Extra Practice Writing Queries

1) Find the names of all people in the database who acted in
Avatar.
• SQL:

SELECT P.name
FROM Person P, Actor A, Movie M
WHERE P.id = A.actor_id
AND M.id = A.movie_id
AND M.name = 'Avatar';

• MongoDB:

Extra Practice Writing Queries (cont.)

2) How many people in the database who were born in California
have won an Oscar?
• SQL:

SELECT COUNT(DISTINCT P.id)
FROM Person P, Oscar O
WHERE P.id = O.person_id

AND P.pob LIKE '%,%California%';

• Can't easily answer this question using our MongoDB
version of the database. Why not?

