
Processing Distributed Data
Using MapReduce

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

MapReduce

• A framework for computation on large data sets that are
fragmented and replicated across a cluster of machines.

• spreads the computation across the machines,
letting them work in parallel

• tries to minimize the amount of data that is
transferred between machines

• The original version was Google's MapReduce system.

• An open-source version is part of the Hadoop project.

• we'll use it as part of PS 4

Sample Problem: Totalling Customer Orders

• Acme Widgets is a company that sells only one type of product.

• Data set: a large collection of records about customer orders

• fragmented and replicated across a cluster of machines

• sample record:
('U123', 500, '03/22/17', 'active')

customer id amount ordered date ordered order status

• Desired computation: For each customer, compute
the total amount in that customer's active orders.

• Inefficient approach: Ship all of the data to one machine
and compute the totals there.

Sample Problem: Totalling Customer Orders (cont.)

• MapReduce does better using "divide-and-conquer" approach.

• splits the collection of records into subcollections
that are processed in parallel

• For each subcollection, a mapper task maps the records to
smaller key-value pairs – in this case, (cust_id, amount active).
('U123', 500, '03/22/17', 'active')  ('U123', 500)
('U456', 50, '02/10/17', 'done')  ('U456', 0)
('U123', 150, '03/23/17', 'active')  ('U123', 150)
('U456', 75, '03/28/17', 'active')  ('U456', 75)

• These smaller pairs are distributed by cust_id to other tasks
that again work in parallel.

• These reducer tasks combine the pairs for a given cust_id
to compute the per-customer totals:
('U123', 500) ('U456', 0)
('U123', 150) ('U456', 75)

('U123', 650) ('U456', 75)

Benefits of MapReduce

• Parallel processing reduces overall computation time.

• Less data is sent between machines.

• the mappers often operate on local data

• the key-value pairs sent to the reducers are
smaller than the original records

• an initial reduction can sometimes be done locally

• example: compute local subtotals for each customer,
then send those subtotals to the reducers

• It provides fault tolerance.

• if a given task fails or is too slow, re-execute it

• The framework handles all of the hard/messy parts.

• The user can just focus on the problem being solved!

MapReduce In General: Mapping

• The system divides up the collection of input records,
and assigns each subcollection Si to a mapper task Mj.

• The mappers apply a map function to each record:

map(k, v): # treat record as a key-value pair
emit 0 or more new key-value pairs (k', v')

• the resulting keys and values (the intermediate results)
can have different types than the original ones

• the input and intermediate keys do not have to be unique

S0

S1

S2

S3

S4

M0

M1

M2

MapReduce In General: Reducing

• The system partitions the intermediate results by key,
and assigns each range of keys to a reducer task Rk.

• Key-value pairs with the same key are grouped together:
(k', v'0), (k', v'1), (k', v'2)  (k', [v'0, v'1, v'2, ...])

• so that all values for a given key are processed together

• The reducers apply a reduce function to each (key, value-list):

reduce(k', [v'0, v'1, v'2, ...]):
emit 0 or more key-value pairs (k", v")

• the types of the (k", v") can be different from the (k', v')

S0

S1

S2

S3

S4

M0

M1

M2

R0

R1

R2

MapReduce In General: Combining (Optional)

• In some cases, the intermediate results can be aggregated
locally using combiner tasks Cn.

• Often, the combiners use the same reduce function
as the reducers.

• produces partial results that can then be combined

• This cuts down on the data transferred to the reducers.

S0

S1

S2

S3

S4

M0

M1

M2

R0

R1

R2

C0

C1

C2

Hadoop MapReduce Framework

• Implemented in Java

• It also includes other, non-Java options for writing
MapReduce applications.

• In PS 4, you'll write simple MapReduce applications in Java.

• To do so, you need to become familiar with some key
classes from the MapReduce API.

• We'll also review some relevant Java concepts.

Classes and Interfaces for Keys and Values

• Found in the org.apache.hadoop.io package

• Types used for values must implement the Writable interface.

• includes methods for efficiently serializing/writing the value

• Types used for keys must implement WritableComparable.
• in addition to the Writeable methods, must also have

a compareTo() method that allows values to be compared

• needed to sort the keys and create key subranges

• The following classes implement both interfaces:

• IntWritable – for 4-byte integers

• LongWritable – for long integers

• DoubleWritable – for floating-point numbers

• Text – for strings/text (encoded using UTF8)

Recall: Generic Classes
public class ArrayList<T> {

private T[] items;
…
public boolean add(T item) {

…
}
…

}

• The header of a generic class includes one or more
type variables.

• in the above example: the variable T

• The type variables serve as placeholders for actual data types.

• They can be used as the types of:

• fields

• method parameters

• method return types

Recall: Generic Classes (cont.)

public class ArrayList<T> {
private T[] items;
…
public boolean add(T item) {

…
}
…

}

• When we create an instance of a generic class, we specify
types for the type variables:

ArrayList<Integer> vals = new ArrayList<Integer>();

• vals will have an items field of type Integer[]

• vals will have an add method that takes an Integer

• We can also do this when we create a subclass of a generic class:

public class IntList extends ArrayList<Integer> {

...

Mapper Class
public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>

• the principal method:
void map(KEYIN key, VALUEIN value, Context context)

• To implement a mapper:

• extend this class with appropriate replacements
for the type variables; for example:
class MyMapper

extends Mapper<Object, Text, Text, IntWritable>

• override map()

type variables
for the (key, value)
pairs given to the
mapper

type variables
for the (key, value)
pairs produced by
the mapper

Reducer Class
public class Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT>

• the principal method:
void reduce(KEYIN key, Iterable<VALUEIN> values,

Context context)

• To implement a reducer:

• extend this class with appropriate replacements
for the type variables

• override reduce()

type variables
for the (key, value)
pairs given to the
reducer

type variables
for the (key, value)
pairs produced by
the reducer

Context Objects

• Both map() and reduce() are passed a Context object:
void map(KEYIN key, VALUEIN value, Context context)

void reduce(KEYIN key, Iterable<VALUEIN> values,
Context context)

• Allows Mappers and Reducers to communicate with the
MapReduce framework.

• Includes a write() method used to output (key, value) pairs:

void write(KEYOUT key, VALUEOUT value)

Example

class MyMapper extends Mapper<Object, Text,
LongWriteable, IntWritable>

Which of these is the correct header for the map method?

A. void map(LongWriteable key, IntWritable value,
Context context)

B. void map(Text key, LongWriteable value,
Context context)

C. void map(Object key, IntWriteable value,
Context context)

D. void map(Object key, Text value, Context context)

Example 1: Birth-Month Counter

• The data: text file(s) containing person records that look like this

id,name,dob,email

where dob is in the form yyyy-mm-dd

• The problem: Find the number of people born in each month.

Example 1: Birth-Month Counter (cont.)

• map should:

• extract the month from the person's dob

• emit a single key-value pair of the form (month string, 1)

111,Alan Turing,1912-06-23,al@aol.com  ("06", 1)
234,Grace Hopper,1906-12-09,gmh@harvard.edu  ("12", 1)
444,Ada Lovelace,1815-12-10,ada@1800s.org  ("12", 1)
567,Howard Aiken,1900-03-08,aiken@harvard.edu  ("03", 1)
777,Joan Clarke,1917-06-24,joan@bletchley.org  ("06", 1)
999,J. von Neumann,1903-12-28,jvn@princeton.edu ("12", 1)

• The intermediate results are distributed by key to the reducers.

• reduce should:

• add up the 1s for a given month

• emit a single key-value pair of the form (month string, total)
("06", [1, 1])  ("06", 2)
("12", [1, 1, 1])  ("12", 3)
("03", [1])  ("03", 1)

Mapper for Example 1

public class BirthMonthCounter {

public static class MyMapper
extends Mapper<Object, Text, Text, IntWritable>

• For data obtained from text files, the Mapper's inputs
will be key-values pairs in which:

• value = a single line from one of the files (a Text value)

• key = the location of the line in the file (a LongWritable)

• however, we use the Object type for the key
because we ignore it, and thus we don't need any
LongWritable methods

• The map method will output pairs in which:

• key = a month string (use Text for it)

• value = 1 (use IntWritable)

Mapper for Example 1 (cont.)

public class BirthMonthCounter {

public static class MyMapper
extends Mapper<Object, Text, Text, IntWritable>

{
public void map(Object key, Text value,

Context context)
{

String record = value.toString();
// code to extract month string goes here
context.write(new Text(month),

new IntWritable(1));
}

}
...

}

Splitting a String

• The String class includes a method named split().

• breaks a string into component strings

• takes a parameter indicating what delimiter should be
used when performing the split

• returns a String array containing the components

• Example:
String sentence = "How now brown cow?";
String[] words = sentence.split(" ");
System.out.println(words[0]);
System.out.println(words[3]);
System.out.println(words.length);

would output:

Processing an Input Record in map
void map(Object key, Text value, Context context)

• Recall: value is a Text object representing one record.

• for Example 1, it looks like:

111,Alan Turing,1912-06-23,al@aol.com

• To extract the month string:

• use the toString() method to convert Text to String:

String line = value.toString();

• split line on the commas to get the fields:

String[] fields = line.split(",");

• similarly, split the date field on the hyphens to get its
components

• could we just split line on the hyphens?

Reducer for Example 1
public static class MyMapper

extends Mapper<Object, Text, Text, IntWritable>
{

...

}

public static class MyReducer
extends Reducer<Text, IntWritable,

Text, LongWritable>
{

public void reduce(Text key,
Iterable<IntWritable> values, Context context)

{
// code to add up the list of 1s goes here
context.write(key, new LongWritable(total));

}
...

• Use LongWritable to avoid overflow with large totals.

Processing the List of Values in reduce
void reduce(Text key, Iterable<IntWritable> values,

Context context)

• Use a for-each loop. In this case:

for (IntWritable val : values)

• More generally, if values is of type Iterable<T> :
for (T val : values)

• To extract the underlying value from most Writable objects,
use the get() method:

int count = val.get(); // val is IntWritable

• However, Text doesn't have a get() method.

• use toString() instead (see earlier notes)

Reducer for Birth-Month Counter
public class BirthMonthCounter {
...
public static class MyReducer

extends Reducer<Text, IntWritable,
Text, LongWritable>

{
public void reduce(Text key,

Iterable<IntWritable> values, Context context)
{

long total = 0;
for (IntWritable val : values) {

total += val.get()
}

context.write(key, new LongWritable(total));
}
...

• Use long and LongWritable to avoid overflow.

Job Objects

• We use a Job object to:

• provide information about our MapReduce job, such as:

• the name of the Mapper class

• the name of the Reducer class

• the types of values produced by the job

• the format of the input to the job

• execute the job

• We'll give you a template for the necessary method calls.

Configuring and Running the Job
public class BirthMonthCounter {

public static class MyMapper extends... {
...

public static class MyReducer extends... {
...

public static void main(String args)
throws Exception {

// code to configure and run the job
}

}

Configuring and Running the Job
public static void main(String[] args)
throws Exception {

Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "birth month");
job.setJarByClass(BirthMonthCounter.class);

job.setMapperClass(MyMapper.class);
job.setReducerClass(MyReducer.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);

// type for mapper's output value,
// because its not the same as the reducer's
job.setMapOutputValueClass(IntWritable.class);

job.setInputFormatClass(TextInputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);

}
}

Example 2: Month with the Most Birthdays

• The data: same as Example 1. Records of the form

id,name,dob,email

where dob is in the form yyyy-mm-dd

• The problem: Find the month with the most birthdays.

Example 2: Month with the Most Birthdays (cont.)

• map should behave as before:

111,Alan Turing,1912-06-23,al@aol.com  ("06", 1)
234,Grace Hopper,1906-12-09,gmh@harvard.edu  ("12", 1)
444,Ada Lovelace,1815-12-10,ada@1800s.org  ("12", 1)

• reduce needs to:

• add up the 1s for a given month
("06", [1, 1])  ("06", 2)
("12", [1, 1, 1])  ("12", 3)
("03", [1])  ("03", 1)

• determine which month has the largest total

• but...

• there can be multiple reducer tasks, each of which
handles one subset of the months

• each reducer can only determine the largest month
in its subset

• the solution: a chain of two MapReduce jobs

Example 2: Chaining Jobs

• First job = count birth months as we did in Example 1

• map1: person record  (birth month, 1)

• reduce1: (birth month, [1, 1, ...])  (birth month, total)

• The second job processes the results of the first job!

• map2: (birth month, total)  (c, (birth month, total))

• output key c = an arbitrary constant, used for all k-v pairs

• output value = a pairing of a birth month and its total
("06", 2) ("month sum", "06,2")
("12", 3) ("month sum", "12,3")
("03", 1) ("month sum", "03,1")

• because there is only one output key,
there is only one reducer task!

• reduce2: find the month with the most birthdays

("month sum", ["06,2", "12,3", "03,1"])  ("12", 3)

Example 2: Chaining Jobs (cont.)

public class MostBirthdaysMonth {

public static class MyMapper1 extends... {
...

}

public static class MyReducer1 extends... {
...

}

public static class MyMapper2 extends... {
...

}

public static class MyReducer2 extends... {
...

}

public static void main(String[] args) throws... {
...

}

Configuring and Running a Chain of Jobs
public static void main(String args)
throws Exception {

Configuration conf = new Configuration();
Job job1 = Job.getInstance(conf, "birth month");
job1.setJarByClass(MostBirthdaysMonth.class);
job1.setMapperClass(MyMapper1.class);
job1.setReducerClass(MyReducer1.class);
...
FileInputFormat.addInputPath(job1, new Path(args[0]));
FileOutputFormat.setOutputPath(job1, new Path(args[1]));
job1.waitForCompletion(true);

Job job2 = Job.getInstance(conf, "max month");
job2.setJarByClass(MostBirthdaysMonth.class);
job2.setMapperClass(MyMapper2.class);
job2.setReducerClass(MyReducer2.class);
...
FileInputFormat.addInputPath(job2, new Path(args[1]));
FileOutputFormat.setOutputPath(job2, new Path(args[2]));
job2.waitForCompletion(true);

}

Structure of the Java Files

• In theory, we could use multiple Java files for each problem:

• one file for the program as a whole

• one file for the Mapper class, one for the Reducer class, etc.

• Instead, we'll put all of the classes in the same file by
using static nested classes:

public class MyProblem {
public static class MyMapper extends ... {

...

}
public static class MyReducer extends ... {

...

}

• Unlike an inner class (aka a non-static nested class),
static nested classes do not depend on their outer class.

• they are equivalent to an outer class from another file

• allows the MapReduce system to instantiate them

