
Distributed Databases
and Replication

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

What Is a Distributed Database?

• One in which data is:

• partitioned / fragmented among multiple machines
and/or

• replicated – copies of the same data are made available
on multiple machines

• It is managed by a distributed DBMS (DDBMS) –
processes on two or more machines that jointly provide
access to a single logical database.

• The machines in question may be:

• at different locations (e.g., different branches of a bank)

• at the same location (e.g., a cluster of machines)

• In the remaining slides, we will use the term site
to mean one of the machines involved in a DDBMS.

• may or may not be at the same location

• A given site may have a local copy of all, part, or none of
a particular database.

• makes requests of other sites as needed

What Is a Distributed Database? (cont.)

DB

network

DB

DB

site 1 site 2

site 3 site 4

Fragmentation / Sharding

• Divides up a database's records among several sites

• the resulting "pieces" are known as fragments/shards

• Let R be a collection of records of the same type (e.g., a relation).

• Horizontal fragmentation divides up the "rows" of R.

• R(a, b, c) R1(a, b, c), R2(a, b, c), …

• R = R1 U R2 U …

• Vertical fragmentation divides up the "columns" of R.

• R(a, b, c) R1(a, b), R2(a, c), … (a is the primary key)

• R = R1 R2 …

cba

cba

cba

cba ba ca

Fragmentation / Sharding (cont.)

• Another version of vertical fragmentation:
divide up the tables (or other collections of records).
• e.g., site 1 gets tables A and B

site 2 gets tables C and D

• Here's a relation from a centralized bank database:

• Here's one way of fragmenting it:

Example of Fragmentation

balancebranchaccount

$11111main111111

$33333main333333

.........

balancebranchaccount

$22222south222222

$70000south444444

.........

balancebranchaccount

$10west123456

$50000west456789

.........

network

citystreetowneraccount

...1 Rich StE. Scrooge111111

...5 Poor LnR. Cratchit123456

............

citystreetowneraccount

...1 Rich StE. Scrooge111111

...5 Poor LnR. Cratchit123456

............

balancebranch

$11111main

$10west

......

main

west south

• Replication involves putting copies of the same collection of
records at different sites.

Replication

network

monthly
fee

interest
rate

account
type

$100%standard

$502%bigsaver

.........

monthly
fee

interest
rate

account
type

$100%standard

$502%bigsaver

.........

monthly
fee

interest
rate

account
type

$100%standard

$502%bigsaver

.........

Reasons for Using a DDBMS

• to improve performance

• how does distribution do this?

• to provide high availability

• replication allows a database to remain available
in the event of a failure at one site

• to allow for modular growth

• add sites as demand increases

• adapt to changes in organizational structure

• to integrate data from two or more existing systems

• without needing to combine them

• allows for the continued use of legacy systems

• gives users a unified view of data maintained by different
organizations

Challenges of Using a DDBMS (partial list)

• determining the best way to distribute the data

• when should we use vertical/horizontal fragmentation?

• what should be replicated, and how many copies do we need?

• determining the best way to execute a query

• need to factor in communication costs

• maintaining integrity constraints (primary key, foreign key, etc.)

• ensuring that copies of replicated data remain consistent

• managing distributed txns: ones that involve data at multiple sites

• atomicity and isolation can be harder to guarantee

Failures in a DDBMS

• In addition to the failures that can occur in a centralized system,
there are additional types of failures for a DDBMS.

• These include:

• the loss or corruption of messages

• TCP/IP handles this type of error

• the failure of a site

• the failure of a communication link

• can often be dealt with by rerouting the messages

• network partition: failures prevent communication
between two subgroups of the sites

Distributed Transactions

• A distributed transaction involves data stored at multiple sites.

• One of the sites serves as the coordinator of the transaction.

• one option: the site on which the txn originated

• The coordinator divides a distributed transaction into
subtransactions, each of which executes on one of the sites.

read balance1
write(balance1 - 500)
read balance2
write(balance2 + 500)

read balance1
write(balance1 - 500)

read balance2
write(balance2 + 500)

subtxn 1

subtxn 2

Types of Replication

• In synchronous replication, transactions are guaranteed to see
the most up-to-date value of an item.

• In asynchronous replication, transactions are not guaranteed
to see the most up-to-date value.

Synchronous Replication I: Read-Any, Write-All

• Read-Any: when reading an item, access any of the replicas.

• Write-All: when writing an item, must update all of the replicas.

• Works well when reads are much more frequent than writes.

• Drawback: writes are very expensive.

Synchronous Replication II: Voting

• When writing, update some fraction of the replicas.

• each value has a version number that is
increased when the value is updated

• When reading, read enough copies to ensure you get
at least one copy of the most recent value (see next slide).

• the copies "vote" on the value of the item

• the copy with the highest version number is the most recent

• Drawback: reads are now more expensive

Synchronous Replication II: Voting (cont.)

• How many copies must be read?
• let: n = the number of copies

w = the number of copies that are written
r = the number of copies that are read

• need: r > n – w (i.e., at least n – w + 1)

• example: n = 6 copies
update w = 3 copies
must read at least 4 copies

• Example: 6 copies of data item A,
each with value = 4, version = 1.

• txn 2 updates A1, A2, and A4 to be 6
(and their version number becomes 2)

• txn 1 reads A2, A3, A5, and A6

• A2 has the highest version number (2),
so its value (6) is the most recent.

A1
6/2

A2
6/2

A4
6/2

A5
4/1

A3
4/1

A6
4/1

Which of these allow us to ensure that
clients always get the most up-to-date value?

• 10 replicas – i.e., 10 copies of each item

• voting-based approach with the following requirements:

number of copies number of copies
accessed when reading accessed when writing

A. 7 3

B. 5 5

C. 9 2

D. 4 8

(select all that work)

Distributed Concurrency Control

• To ensure the isolation of distributed transactions,
need some form of distributed concurrency control.

• Extend the concurrency control schemes that we studied earlier.

• we'll focus on extending strict 2PL

• If we just used strict 2PL at each site, we would ensure
that the schedule of subtxns at each site is serializable.

• why isn't this sufficient?

Distributed Concurrency Control (cont.)

• Example of why special steps are needed:

• voting-based synchronous replication with 6 replicas

• let's say that we configure the voting as before:
• each write updates 3 copies
• each read accesses 4 copies

• can end up with schedules that are not conflict serializable

• example:

T2T1

xl(A4); xl(A5); xl(A6)
w(A4); w(A5); w(A6)

xl(B4); xl(B5); xl(B6)
w(B4); w(B5); w(B6)

xl(A1); xl(A2); xl(A3)
w(A1); w(A2); w(A3)

xl(B1); xl(B2); xl(B3)
w(B1); w(B2); w(B3)

Xi = the copy of item X
at site i

T1 should come before
T2 based on the order in
which they write A.

T1 should come after T2
based on the order in
which they write B.

What Do We Need?

• We need shared and exclusive locks for a logical item,
not just for individual copies of that item.

• referred to as global locks

• doesn't necessarily mean locking every copy

• Requirements for global locks:

• no two txns can hold a global exclusive lock for the same item

• any number of txns can hold a global shared lock for an item

• a txn cannot acquire a global exclusive lock on an item
if another txn holds a global shared lock on that item,
and vice versa

What Do We Need? (cont.)

• In addition, we need to ensure the correct ordering of operations
within each distributed transaction.

• don't want a subtxn to get ahead of where it should be
in the context of the txn as a whole

• relevant even in the absence of replication

• one option: have the coordinator of the txn acquire
the necessary locks before sending operations to a site

Option 1: Centralized Locking

• One site manages the lock requests for all items in the
distributed database.

• even items that don't have copies stored at that site

• since there's only one place to acquire locks,
these locks are obviously global locks!

• Problems with this approach?

• the lock site can become a bottleneck

• if the lock site crashes, operations at all sites are blocked

Option 2: Primary-Copy Locking

• One copy of an item is designated the primary copy.

• The site holding the primary copy handles all lock requests
for that item.

• acquiring a shared lock for the primary copy
gives you a global shared lock for the item

• acquiring an exclusive lock for the primary copy
gives you a global exclusive lock for the item

• To prevent one site from becoming a bottleneck,
distribute the primary copies among the sites.

• Problem: If a site goes down, operations are blocked
on all items for which it holds the primary copy.

Option 3: Fully Distributed Locking

• No one site is responsible for managing lock requests
for a given item.

• A transaction acquires a global lock for an item
by locking a sufficient number of the item's copies.

• these local locks combine to form the global lock

• To acquire a global shared lock, acquire local shared locks
for a sufficient number of copies (see next slide).

• To acquire a global exclusive lock, acquire local exclusive locks
for a sufficient number of copies (see next slide).

Option 3: Fully Distributed Locking (cont.)

• How many copies must be locked?
• let: n = the total number of copies

x = the number of copies that must be locked to
acquire a global exclusive lock

s = the number of copies that must be locked to
acquire a global shared lock

• we need x > n/2

• guarantees that no two txns can both acquire
a global exclusive lock at the same time

• we need s > n – x (i.e., s + x > n)

• if there's a global exclusive lock on an item,
there aren't enough unlocked copies for a global shared lock

• if there's a global shared lock on an item,
there aren't enough unlocked copies for a global excl. lock

Option 3: Fully Distributed Locking (cont.)

• Our earlier example would no longer be possible:

T2T1

xl(A4); xl(A5); xl(A6)
w(A4); w(A5); w(A6)

xl(B4); xl(B5); xl(B6)
w(B4); w(B5); w(B6)

xl(A1); xl(A2); xl(A3)
w(A1); w(A2); w(A3)

xl(B1); xl(B2); xl(B3)
w(B1); w(B2); w(B3)

T2T1

xl(A4); xl(A5);
xl(A6) – denied
must wait for T1

xl(A1); xl(A2); xl(A3);
xl(A6)
w(A1); w(A2); w(A3);
w(A6)

• n = 6
• need x > 6/2
• must acquire at least

4 local exclusive locks
before writing

Synchronous Replication and Fully Distributed Locking

• Read-any write-all:

• when writing an item, a txn must update all of the replicas

• this gives it x = n exclusive locks, so x > n/2

• when reading an item, a txn can access any of the replicas

• this gives it s = 1 shared lock, and 1 > n – n

• Voting:

• when writing, a txn updates a majority of the copies –
i.e., w copies, where w > n/2.

• this gives it x > n/2 exclusive locks as required

• when reading, a txn reads r > n – w copies
• this gives it s > n – x shared locks as required

Which of these would work?

• 9 replicas – i.e., 9 copies of each item

• fully distributed locking

• voting-based approach with the following requirements:

number of copies
read written

A. 5 5

B. 6 4

C. 7 3

D. 4 5

(select all that work)

Which of these would work?

• 9 replicas – i.e., 9 copies of each item

• primary-copy locking

• voting-based approach with the following requirements:

number of copies
read written

A. 5 5

B. 6 4

C. 7 3

D. 4 5

(select all that work)

Distributed Deadlock Handling

• Under centralized locking, we can just use one of the schemes
that we studied earlier in the semester.

• Under the other two locking schemes, deadlock detection
becomes more difficult.

• local waits-for graphs alone will not necessarily detect a
deadlock

• example:

site 1: site 2:

• one option: periodically send local waits-for graphs
to one site that checks for deadlocks

• Instead of using deadlock detection, it's often easier to use
a timeout-based scheme.

• if a txn waits too long, presume deadlock and roll it back!

T1 T2 T1 T2

Recall: Types of Replication

• In synchronous replication, transactions are guaranteed to see
the most up-to-date value of an item.

• In asynchronous replication, transactions are not guaranteed
to see the most up-to-date value.

Asynchronous Replication I: Primary Site

• In primary-site replication, one replica is designated the
primary or master replica.

• All writes go to the primary.

• propagated asynchronously to the other replicas
(the secondaries)

• The secondaries can only be read.

• no locks are acquired when accessing them

• thus, we only use them when performing read-only txns

• Drawbacks of this approach?

Asynchronous Replication II: Peer-to-Peer

• In peer-to-peer replication, more than one replica can be updated.

• Problem: need to somehow resolve conflicting updates!

