
Semistructured Data and XML

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

Structured Data

• We've covered two logical data models thus far:

• ER diagrams

• relational schemas

• Both use a schema to define the structure of the data.

• The schema in these models is:

• separate from the data itself

• rigid: all data items of a particular type must have the
same set of fields/attributes

Semistructured Data

• In semistructured data:

• there may or may not be a separate schema

• the schema is not rigid

• example: capturing people's addresses

• some records may have 4 separate fields:
• street, city, state, zip

• other records may use a single address field

• Semistructured data is self-documenting.

• information describing the data is embedded with the data

<course>
<name>CS 460</name>
<begin>1:25</begin>
…

</course>

Semistructured Data (cont.)

• Its features facilitate:

• the integration of information from different sources

• the exchange of information between applications

• Example: company A receives data from company B

• A only cares about certain fields in certain types of records

• B's data includes:

• other types of records

• other fields within the records that company A cares about

• with semistructured data, A can easily recognize and ignore
unexpected elements

• the exchange is more complicated with structured data

XML (Extensible Markup Language)

• One way of representing semistructured data.

• Like HTML, XML is a markup language.

• it annotates ("marks up") documents with tags

• tags generally come in pairs:

• begin tag: <tagname>

• end tag: </tagname>

• example:
Like HTML, XML is a markup language.

• Unlike HTML, XML is extensible.

• the set of possible tags – and their meaning – is not fixed

HTML begin tag for a list item HTML end tag for a list item

XML Elements

• An XML element is:

• a begin tag

• an end tag (in some cases, this is merged into the begin tag)

• all info. between them.

• example:

<name>CS 460</name>

• An element can include other nested child elements.
<course>

<name>CS 460</name>
<begin>1:25</begin>
…

</course>

• Related XML elements are grouped together into documents.

• may or may not be stored as an actual text document

XML Attributes

• An element may also include attributes that describe it.

• Specified within the element’s begin tag.

• syntax: name="value"

• Example:
<course catalog_number="12345" exam_group="16">

<name>CS 460</name>
<begin>1:25</begin>
…

</course>

Attributes vs. Child Elements

• The string values used for attributes can serve special purposes
(more on this later)

child elementattribute

an arbitrary number
of times

at most once in a
given element

number of
occurrences

can have its own
children

always a stringvalue

Well-Formed XML

• In a well-formed XML document:

• there is a single root element that contains all other elements

• may optionally be preceded by an XML declaration
(more on this in a moment)

• each child element is completely nested within its parent

• this would not be allowed:
<course><name>CS 460</name>

<time>
<begin>1:25</begin>
<end>2:15</end>

</course>
</time>

• The elements need not correspond to any predefined standard.
• a separate schema is not required

Example of an XML Document
<?xml version="1.0" standalone="yes"?>
<university-data>

<course>
<name>CS 111</name>
<start>10:10</start>
<end>11:00</end>

</course>
<room>

<bldg>CAS</bldg>
<num>B12</num>

</room>
<course>

<name>CS 460</name>
<time>

<begin>1:25</begin>
<end>2:15</end>

</time>
</course>
...

</university-data>

optional declaration

single root element

Specifying a Separate Schema

• XML doesn’t require a separate schema.

• However, we still need one if we want programs to:

• easily process XML documents

• validate the contents of a given document

• The resulting schema can still be semistructured.

• for example, can include optional components

• more flexible than ER models and relational schema

Special Types of Attributes

• ID an identifier that must be unique within the document
(among all ID attributes – not just this attribute)

• IDREF a single value that is the value of an ID attribute
elsewhere in the document

• IDREFS a list of ID values from elsewhere in the document

Capturing Relationships in XML

• Two options:

1. store references from one element to other elements using
ID, IDREF and IDREFS attributes:

<course cid="C20119" teacher="P123456">
<cname>CS 111</cname>
…

</course>

<course cid="C20268" teacher="P123456">
<cname>CS 460</cname>
…

</course>

<person pid="P123456" teaches="C20119 C20268">
<pname>

<last>Sullivan</last>
<first>David</first>

</pname>
</person>

• where have we seen something similar?

Capturing Relationships in XML (cont.)

2. use child elements:

<course cid="C20119">
<cname>CS 111</cname>
<teacher id="P123456">David Sullivan</teacher>

</course>

…
<person pid="P123456">

<pname>
<last>Sullivan</last>
<first>David</first>

</pname>
<courses-taught>

<course-taught>CS 111</course-taught>
<course-taught>CS 460</course-taught>

</courses-taught>
</person>

• There are pluses and minuses to each approach.

• we'll revisit this design issue later in the course

Summary: Features of an XML Document
<?xml version="1.0" standalone="yes"?>

<university-data>
<course cid="C20268" teacher="P123456">

<name>CS 460</name>
<start>1:25</start>
<end>2:15</end>

</course>
<course cid="C20119" teacher="P123456" room="CAS 522">

<name>CS 111</name><start>10:10</start><end>11:00</end>
</course>
<person pid="P123456"

teaches="C20119 C20268">
<name>

<last>Sullivan</last>
<first>David</first>

</name>
</person>
<holiday date="04/15/2019" />
...

</university-data>

optional declaration

single root element

• Elements can have other
child elements nested inside them.

• Attributes are found in the
start tag of an element.

• Simple elements have no children
or attributes.

• Empty elements only have a
start tag (and possibly attributes)

• use a / at end of start tag

XML Documents as Trees
<?xml version="1.0" standalone="yes"?>
<university-data>

<course><name>CS 460</name>
<start>1:25</start>
<end>2:15</end>

</course>
…

<course><name>CS 111</name>
<start>10:10</start>
<end>11:00</end>

</course>
…

</university-data>

• Elements correspond to nodes in the tree.

• root element == root node of the entire tree

• child element == child of a node

• leaf nodes == empty elements or ones without child elements

• Start tags are edge labels.

• Attributes and text values are data stored in the node.

course

start

endname

CS 460

1:25

2:15

course

start

endname

CS 111

10:10

11:00

university-data

XPath Expressions

• Used to specify one or more elements or attributes by
providing a path to the relevant nodes in the document tree.

• like a pathname in a hierarchical filesystem

• Expressions that begin with / specify a path that begins
at the root of the document.

/university-data/course

• selects all course elements
that are children of the
university-data root element

course

start

endname

course

start

endname

university-data

CS 460

1:25

2:15 CS 111

10:10

11:00

XPath Expressions

• Used to specify one or more elements or attributes by
providing a path to the relevant nodes in the document tree.

• like a pathname in a hierarchical filesystem

• Expressions that begin with / specify a path that begins
at the root of the document.

/university-data/course

• selects all course elements
that are children of the
university-data root element

• Expressions that begin with //
select elements from anywhere
in the document.

//course

• selects all course elements,
regardless of where they appear

course

start

endname

course

start

name

university-data

prereqs

course

start

name

CS 112

end

end

11:30

CS 460

1:25

2:15 CS 111

10:10

11:00

XPath Expressions (cont.)

• Attribute names are preceded by an @ symbol:

• example: //person/@pid
• selects all pid attributes of all person elements

• We can specify a particular document as follows:

document("doc-name")path-expression

• example:

document("university.xml")//course/start

Predicates in XPath Expressions
<course cid="C20119" teacher="P123456" room="CAS 522">

<name>CS 111</name><start>10:10</start><end>11:00</end>
</course>

<course cid="C20268" teacher="P123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>

</course>

<course cid="C20757" teacher="P778787" room="COM 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>

</course>

• Example:
//course[@teacher="P123456"]

• selects all course elements with a teacher attribute of "P123456"

• In general, predicates are:

• surrounded by square brackets

• applied to elements selected by the preceding path expression

Predicates in XPath Expressions (cont.)

<course cid="C20119" teacher="P123456" room="CAS 522">
<name>CS 111</name><start>10:10</start><end>11:00</end>

</course>

<course cid="C20268" teacher="P123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>

</course>

<course cid="C20757" teacher="P778787" room="COM 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>

</course>

//course[name="CS 460"]

• selects all course elements with a name child element
whose value is "CS 460"
 <course cid="C20268" teacher="P123456">

<name>CS 460</name><start>1:25</start><end>2:15</end>
</course>

//course[start="1:25"]/name

Predicates in XPath Expressions (cont.)

<course cid="C20119" teacher="P123456" room="CAS 522">
<name>CS 111</name><start>10:10</start><end>11:00</end>

</course>

<course cid="C20268" teacher="P123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>

</course>

<course cid="C20757" teacher="P778787" room="COM 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>

</course>

//course[name="CS 112"]/@room

Predicates in XPath Expressions (cont.)

<course cid="C20119" teacher="P123456" room="CAS 522">
<name>CS 111</name><start>10:10</start><end>11:00</end>

</course>

<course cid="C20268" teacher="P123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>

</course>

<course cid="C20757" teacher="P778787" room="COM 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>

</course>

• We can test for the presence of an element or attribute:

• example: //course[@room]
• selects all course elements that have a specified room attribute

• We can use the contains() function for substring matching:

• example: //course[contains(name, "CS")]

Predicates in XPath Expressions (cont.)

<room>
<building>CAS</building><room_num>212</room_num>

</room>
<room>

<building>CAS</building><room_num>100</room_num>
</room>
<room>

<building>KCB</building><room_num>101</room_num>
</room>
<room>

<building>PSY</building><room_num>228D</room_num>
</room>

• Use . to represent nodes selected by the preceding path.

//room/room_num[. < 200]

• selects all room_num elements with values < 200

//room[room_num < 200]

• selects all room elements with room_num child values < 200

Predicates in XPath Expressions (cont.)

<room>
<building>CAS</building><room_num>212</room_num>

</room>
<room>

<building>CAS</building><room_num>100</room_num>
</room>
<room>

<building>KCB</building><room_num>101</room_num>
</room>
<room>

<building>PSY</building><room_num>228D</room_num>
</room>

• Use .. to represent the parents of the nodes selected by
the preceding path.

//room_num[../building="CAS"]

• selects all room_num elements for parent elements that also
have a building child whose value is "CAS"

• this is similar: //room[building="CAS"]/room_num

<room_num>212</room_num>
<room_num>100</room_num>

Predicates in XPath Expressions (cont.)

<room>
<building>CAS</building><room_num>212</room_num>

</room>
<office>

<building>CAS</building><room_num>100</room_num>
</office>
<room>

<building>KCB</building><room_num>101</room_num>
</room>
<office>

<building>PSY</building><room_num>228D</room_num>
</office>

• If there are other elements that also have nested
room_num and building elements (like office elements above)

• //room_num[../building="CAS"] will get room_num children
from all such elements with a building child = "CAS"

• //room[building="CAS"]/room_num will only get
room_num children from room elements with a
building child = "CAS"

What would this expression select?
<course cid="C20119" teacher="P123456" room="CAS 522">

<name>CS 111</name><start>10:10</start><end>11:00</end>
</course>

<course cid="C20268" teacher="P123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>

</course>

<course cid="C20757" teacher="P778787" room="COM 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>

</course>

//end[../@teacher="P778787"]

A. <course cid="C20757" teacher="P778787" room="COM 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>

</course>

B. <course teacher="P778787"><end>12:45</end></course>

C. <end>12:45</end>

D. none of these

Which of these would select the highlighted element?
<course id="C20119" teacher="P123456" room="011">

<name>CS 111</name><start>10:10</start><end>11:00</end>
</course>

<course id="C20268" teacher="P123456">
<name>CS 460</name><start>13:25</start><end>14:15</end>

</course>

<course id="C20757" teacher="P778787" room="789">
<name>CS 112</name><start>11:30</start><end>12:45</end>

</course>

A. //course[start = "10:10"]

B. //course/start[. = "10:10"]

C. /course/start[. = "10:10"]

D. /course[start = "10:10"]

E. //start[../end = "11:00"]

XQuery and FLWOR Expressions

• XQuery is to XML documents what SQL is to relational tables.

• XPath is a subset of XQuery.

• every XPath expression is a valid XQuery query

• In addition, XQuery provides FLWOR expressions.

• similar to SQL SELECT commands

• syntax: for $fvar1 in Xpath_f1,
$fvar2 in Xpath_f2,…

let $lvar1 := Xpath_l1, …
where condition
order by Xpath_o1, …
return result-format

• The for clause is like the FROM clause in SQL.

• the query iterates over all combinations of values from its
XPath expressions (like Cartesian product!)

• query above looks at combos of CAS rooms and courses

• The let clause is applied to each combo. from the for clause.

• each variable gets the full set produced by its XPath expr.

• unlike a for clause, which assigns the results of the
XPath expression one value at a time

FLWOR Expressions

for $r in //room[contains(name, "CAS")],
$c in //course

let $e := //person[contains(@enrolled, $c/@id)]
where $c/@room = $r/@id and count($e) > 20
order by $r/name
return ($r/name, $c/name)

• The where clause is applied to the results of for and let.

• If the where clause is true, the return clause is applied.

• The order by clause can be used to sort the results.

FLWOR Expressions (cont.)

for $r in //room[contains(name, "CAS")],
$c in //course

let $e := //person[contains(@enrolled, $c/@id)]
where $c/@room = $r/@id and count($e) > 20
order by $r/name
return ($r/name, $c/name)

• It's sometimes possible to move components of the
where clause up into the for clause as predicates.

• In the above query, we could move the first condition up:

for $r in //room[contains(name, "CAS")],
$c in //course[@room = $r/@id]

let $e := //person[contains(@enrolled, $c/@id)]
where count($e) > 20
order by $r/name
return ($r/name, $c/name)

Note: The Location of Predicates

for $r in //room[contains(name, "CAS")],
$c in //course

let $e := //person[contains(@enrolled, $c/@id)]
where $c/@room = $r/@id and count($e) > 20
order by $r/name
return ($r/name, $c/name)

return Clause
<course cid="C20119" teacher="P123456" room="CAS 522">

<name>CS 111</name><start>10:10</start><end>11:00</end>
</course>

<course cid="C20268" teacher="P123456">
<name>CS 460</name><start>13:25</start><end>14:15</end>

</course>

<course cid="C20757" teacher="P778787" room="COM 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>

</course>

• Like the SELECT clause in SQL.

• Can be used to perform something like a projection.

for $c in //course
where $c/start > "11:00"
return $c/name

 <name>CS 460</name>
<name>CS 112</name>

$c =

return Clause (cont.)

• Another example:
for $c in //course
where $c/start > "11:00"
return ($c/name, $c/start, " ")

• To return multiple elements/attributes for each item:

• separate them using a comma

• surround them with parentheses, because the comma
operator has higher precedence and would end the FLWOR

• you can also include string literals

• above, we specify a blank line after the start time

• full elements already appear on separate lines,
so we don't need spaces for that

Reshaping the Output

• We can reshape the output by constructing new elements:
for $c in //course
where $c/start > "11:00"
return <after11-course>

{$c/name/text(), " - ", $c/start/text()}
</after11-course>

• the text() function gives just the value of a simple element

• without its start and end tags

• when constructing a new element, need curly braces
around expressions that should be evaluated

• otherwise, they'll be treated as literal text that is
the value of the new element

• here again, use commas to separate items

• because we're using text(), there are no newlines
after the name and start time

• we use a string literal to put something between them

Reshaping the Output (cont.)

<course id="C20119" teacher="P123456" room="011">
<name>CS 111</name><start>10:10</start><end>11:00</end>

</course>

<course id="C20268" teacher="P123456">
<name>CS 460</name><start>13:25</start><end>14:15</end>

</course>

<course id="C20757" teacher="P778787" room="789">
<name>CS 112</name><start>11:30</start><end>12:45</end>

</course>

for $c in //course
where $c/start > "11:00"
return <after11-course>

{$c/name/text(), " - ", $c/start/text()}
</after11-course>

• The result will look something like this:
<after11-course>CS 460 - 13:25</after11-course>
<after11-course>CS 112 - 11:30</after11-course>

for vs. let

• Here's an example that illustrates how they differ:

for $d in document("depts.xml")/depts/dept/deptno
let $e := document("emps.xml")/emps/emp[deptno = $d]
where count($e) >= 10
return <big-dept>

{
$d,
<headcount>{count($e)}</headcount>,
<avgsal>{avg($e/salary)}</avgsal>

}

</big-dept>

• the for clause assigns to $d one deptno element at a time

• for each value of $d, the let clause assigns to $e
the full set of emp elements from that department

• the where clause limits us to depts with >= 10 employees

• we create a new element for each such dept.

• we use functions on the set $e and on values derived from it

Nested Queries

• We can nest FLWOR expressions:
• example: group together each instructor's person info.

with the courses taught by him/her
for $p in //person[@teaches]
return <instructor-courses>

{ $p,
for $c in //course
where contains($p/@teaches, $c/@id)
return $c

}
</instructor-courses>

• result:
<instructor-courses>

<person id="P123456" teaches="C20119 C20268">
<name><last>Sullivan</last>…</name>

</person>
<course id="C20119" teacher="P123456">

<name>CS 111</name> …
</course>
…

</instructor-courses>
...

Reformatting the Results of the Previous Query

for $p in //person[@teaches]
return
<instructor>
{<name>{$p/pname/first/text(), " ", $p/pname/last/text()}
</name>,
for $c in //course
where contains($p/@teaches, $c/@id)
return <course>{$c/name/text()}</course>
}
</instructor>

• result:
<instructor>

<name>David Sullivan</name>
<course>CS 111</course>
<course>CS 460</course>
…

</instructor>
…

Implementing an XML DBMS

• Two possible approaches:

1) build it on top of a DBMS that uses another model

• use a logical-to-logical mapping
that can accommodate any XML document

• example: define an XML-to-relational mapping

XML document one or more tuples

2) build it directly on top of a storage engine (or file system!)

• use an appropriate logical-to-physical mapping

• similar to what you did in PS 2, Part II!

Approach 1: Logical-to-Logical Mappings

• Possible XML-to-relational mappings:

1) use a schema that stores an entire XML document
as the value of a single attribute:

document(id, contents)

• useful if you need to preserve the exact bytes of the
original document (ex: for legal purposes)

• may also be useful if you have small documents
that are typically retrieved in their entirety

2) use a schema that encodes the tree structure
of the document

• example: a table for elements that looks something like
element(id, parent_id, name, value)

Approach 2: Logical-to-Physical Mappings

• Option 1: Store each document in a flat file.
• advantages:

• the mapping is very simple!

• there are many tools that allow you to manipulate XML
that is stored in this way

• it makes the data easily readable

• disadvantages?

•

•

• Option 2: make direct use of a traditional storage engine

• get the benefits of a DBMS (indexing, transactions, etc.)
without the overhead of a logical-to-logical mapping

• the logical-to-physical mapping is less straightforward

