Semistructured Data and XML

Harvard Extension School
Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

Structured Data

» We've covered two logical data models thus far:
* ER diagrams
* relational schemas

» Both use a schema to define the structure of the data.

 The schema in these models is:
» separate from the data itself

* rigid: all data items of a particular type must have the
same set of fields/attributes

Semistructured Data

* In semistructured data:
+ there may or may not be a separate schema
» the schema is not rigid
» example: capturing people's addresses
* some records may have 4 separate fields:
e street, city, state, zip
« other records may use a single address field

« Semistructured data is self-documenting.
+ information describing the data is embedded with the data

<course>
<name>CS 460</name>
<begin>1:25</begin>

</course>

Semistructured Data (cont.)

+ Its features facilitate:
+ the integration of information from different sources
» the exchange of information between applications

» Example: company A receives data from company B
» Aonly cares about certain fields in certain types of records
» B's data includes:
« other types of records
« other fields within the records that company A cares about

» with semistructured data, A can easily recognize and ignore
unexpected elements

» the exchange is more complicated with structured data

XML (Extensible Markup Language)

One way of representing semistructured data.

Like HTML, XML is a markup language.
* it annotates ("marks up") documents with tags
» tags generally come in pairs:
* begintag: <tagname>
* end tag: </ tagname>
* example:
Like HTML, XML is a markup language.</1i>

HTML begin tag for a list item HTML end tag for a list item

Unlike HTML, XML is extensible.
 the set of possible tags — and their meaning — is not fixed

XML Elements

An XML element is:
* a begin tag
* an end tag (in some cases, this is merged into the begin tag)
+ all info. between them.
* example:
<name>CS 460</name>

An element can include other nested child elements.

<course>
<name>CS 460</name>
<begin>1:25</begin>

</course>

Related XML elements are grouped together into documents.
* may or may not be stored as an actual text document

XML Attributes

* An element may also include attributes that describe it.

» Specified within the element’s begin tag.
* syntax: name="value"

+ Example:
<course catalog_number="12345" exam_group="16">

<name>CS 460</name>
<begin>1:25</begin>

</course>

Attributes vs. Child Elements

attribute child element
number of at most once in a an arbitrary number
occurrences |given element of times
value always a string can have its own
children

» The string values used for attributes can serve special purposes
(more on this later)

Well-Formed XML

* In a well-formed XML document:
+ there is a single root element that contains all other elements

* may optionally be preceded by an XML declaration
(more on this in a moment)

* each child element is completely nested within its parent
» this would not be allowed:

<course><name>CS 460</name>
<time>
<begin>1:25</begin>
<end>2:15</end>
</course>
</time>

» The elements need not correspond to any predefined standard.
* a separate schema is not required

Example of an XML Document

<?xml version="1.0" standalone="yes"?> <«—— optional declaration
<university-data>
<course>
<name>CS 11l</name>
<start>10:10</start>
<end>11:00</end>
</course>
<room>
<bldg>CAS</bldg>
<num>B12</num>
</room>
<course>
<name>CS 460</name>
<time>
<begin>1:25</begin>
<end>2:15</end>
</time>
</course>

single root element

</university-data>

Specifying a Separate Schema

+ XML doesn’t require a separate schema.

» However, we still need one if we want programs to:
+ easily process XML documents
+ validate the contents of a given document

» The resulting schema can still be semistructured.
» for example, can include optional components
* more flexible than ER models and relational schema

Special Types of Attributes

« ID an identifier that must be unique within the document
(among all 1p attributes — not just this attribute)

- IDREF a single value that is the value of an 1D attribute
elsewhere in the document

- 1IDREFS a list of 1D values from elsewhere in the document

Capturing Relationships in XML
» Two options:

1. store references from one element to other elements using
1D, IDREF and IDREFS attributes:

<course cid="C20119" teacher="P123456">
<chame>CS 111l</cname>

</course>

<course cid="C20268" teacher="P123456">
<chame>CS 460</cname>

</course>

<person pid="P123456" teaches="C20119 C20268">
<pname>
<Tast>Ssullivan</last>
<first>David</first>
</pname>
</person>

» where have we seen something similar?

Capturing Relationships in XML (cont.)

2. use child elements:

<course cid="c20119">

<cname>CS 11l1l</cname>

<teacher 1id="P123456">David Sullivan</teacher>
</course>

<person pid="P123456">
<pname>
<Tast>Sullivan</last>
<first>David</first>
</pname>
<courses-taught>
<course-taught>CS 111</course-taught>
<course-taught>CS 460</course-taught>
</courses-taught>
</person>

» There are pluses and minuses to each approach.
» we'll revisit this design issue later in the course

Summary: Features of an XML Document

<?xml version="1.0" standalone="yes"?> <—— optional declaration

<university-data> <—— single root element
<course cid="cC20268" teacher="P123456">
<name>CS 460</name>
<start>1:25</start>
<end>2:15</end>
</course>
<course cid="C20119" teacher="P123456" room="CAS 522">
<name>CS 1ll</name><start>10:10</start><end>11:00</end>
</course>

<person pid="P123456"

teaches="c20119 c20268"> | ° Elements can have other

child elements nested inside them.

<name>
<last>sullivan</last> « Attributes are found in the
<first>David</first> start tag of an element.
</name> . .
</person> » Simple elements have no children
<holiday date="04/15/2019" /> or attributes.

* Empty elements only have a
start tag (and possibly attributes)

» use a / at end of start tag

</university-data>

XML Documents as Trees

university-data

<?xml version="1.0" standalone="yes"?>
<university-data>
<course><name>CS 460</name>
<start>1:25</start>
<end>2:15</end>
</course>

<course><name>CS 11l</name>
<start>10:10</start> CS 460 2115 CS 111
<end>11:00</end>
</course> 1:25 10:10

</university-data>
* Elements correspond to nodes in the tree.

* root element == root node of the entire tree

+ child element == child of a node

+ leaf nodes == empty elements or ones without child elements
» Start tags are edge labels.

« Attributes and text values are data stored in the node.

XPath Expressions

Used to specify one or more elements or attributes by
providing a path to the relevant nodes in the document tree.

* like a pathname in a hierarchical filesystem

Expressions that begin with / specify a path that begins
at the root of the document.
/university-data/course

« selects all course elements
that are children of the
university-data root element

university-data

215 CsS 1M1

1:25 10:10

XPath Expressions

Used to specify one or more elements or attributes by
providing a path to the relevant nodes in the document tree.

* like a pathname in a hierarchical filesystem

Expressions that begin with / specify a path that begins
at the root of the document.
/university-data/course

« selects all course elements
that are children of the
university-data root element

university-data

Expressions that begin with //
select elements from anywhere
in the document.

//course

+ selects all course elements,
regardless of where they appear

XPath Expressions (cont.)

» Attribute names are preceded by an @ symbol:
* example: //person/@pid
- selects all pid attributes of all person elements

» We can specify a particular document as follows:
document (" doc-name") path-expression

+ example:
document("university.xml1")//course/start

Predicates in XPath Expressions

<course cid="C20119" teacher="P123456" room="CAS 522">
<name>CS 11l</name><start>10:10</start><end>11:00</end>
</course>

<course cid="C20268" teacher="pP123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>
</course>

<course cid="C20757" teacher="pP778787" room="com 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>
</course>

+ Example:
//course[@teacher="P123456"]
» selects all course elements with a teacher attribute of "P123456"

* In general, predicates are:
» surrounded by square brackets
+ applied to elements selected by the preceding path expression

Predicates in XPath Expressions (cont.)

<course cid="cC20119" teacher="P123456" room="CAS 522">
<name>CS 1ll</name><start>10:10</start><end>11:00</end>
</course>

<course cid="cC20268" teacher="pP123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>
</course>

<course cid="C20757" teacher="pP778787" room="com 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>
</course>

//course[name="CS 460"]
« selects all course elements with a name child element
whose value is "CS 460"

=» <course cid="cC20268" teacher="pP123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>
</course>

//course[start="1:25"]/name

Predicates in XPath Expressions (cont.)

<course cid="c20119" teacher="P123456" room="CAS 522">
<name>CS 1lll</name><start>10:10</start><end>11:00</end>
</course>

<course cid="C20268" teacher="pP123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>
</course>

<course cid="C20757" teacher="pP778787" room="com 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>
</course>

//course[name="cCcs 112"]/@room

Predicates in XPath Expressions (cont.)

<course cid="cC20119" teacher="P123456" room="CAS 522">
<name>CS 1ll</name><start>10:10</start><end>11:00</end>
</course>

<course cid="cC20268" teacher="pP123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>
</course>

<course cid="C20757" teacher="pP778787" room="com 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>
</course>

* We can test for the presence of an element or attribute:

* example: //course[@room]
« selects all course elements that have a specified room attribute

* We can use the contains () function for substring matching:
* example: //course[contains(name, "CS")]

Predicates in XPath Expressions (cont.)

<room>
<building>CAS</building><room_num>212</room_num>

</room>

<room>
<building>CAS</building><room_num>100</room_num>

</room>

<room>
<building>KCB</building><room_num>101</room_num>

</room>

<room>
<building>PSY</building><room_num>228D</room_num>

</room>

+ Use . torepresent nodes selected by the preceding path.
//room/room_num[. < 200]

 selects all room_num elements with values < 200

//room[room_num < 200]
 selects all room elements with room_num child values < 200

Predicates in XPath Expressions (cont.)

<room>
<building>CAS</building><room_num>212</room_num>

</room>

<room>
<building>CAs</building><room_num>100</room_num>

</room>

<room>
<buiTlding>KCB</building><room_num>101</room_num>

</room>

<room>
<building>PSY</building><room_num>228D</room_num>

</room>

Use .. to represent the parents of the nodes selected by
the preceding path.

<room_num>212</room_num>
//room_num[../building="CAS"] 2 <room_num>100</room_nums

+ selects all room_num elements for parent elements that also
have a building child whose value is "CAS"

« this is similar: //room[building="CAS"]/room_num

Predicates in XPath Expressions (cont.)

<room>
<building>CAS</building><room_num>212</room_num>

</room>

<office>
<building>CAS</building><room_num>100</room_num>

</office>

<room>
<building>KCB</building><room_num>101</room_num>

</room>

<office>
<building>PSY</building><room_num>228D</room_num>

</office>

If there are other elements that also have nested
room_num and building elements (like office elements above)

e //room_num[../building="CAS"] will get room_num children
from all such elements with a building child = "CAS"

e //room[building="CAS"]/room_num will only get
room_num children from room elements with a
building child ="CAS"

What would this expression select?

<course cid="cC20119" teacher="P123456" room="CAS 522">
<name>CS 1ll</name><start>10:10</start><end>11:00</end>
</course>

<course cid="cC20268" teacher="pP123456">
<name>CS 460</name><start>1:25</start><end>2:15</end>
</course>

<course cid="C20757" teacher="pP778787" room="com 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>
</course>

//end[../@teacher="pP778787"]
A. <course cid="c20757" teacher="pP778787" room="coM 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>
</course>
B. <course teacher="pP778787"><end>12:45</end></course>

C. <end>12:45</end>

D. none of these

Which of these would select the highlighted element?

<course id="c20119" teacher="pP123456" room="011">
<nhame>CS 1ll</name><start>10:10</start><end>11:00</end>
</course>

<course id="C20268" teacher="P123456">
<name>CS 460</name><start>13:25</start><end>14:15</end>
</course>

<course id="C20757" teacher="P778787" room="789">
<name>CS 112</name><start>11:30</start><end>12:45</end>
</course>

//course[start = "10:10"]
//course/start[. = "10:10"]
/course/start[. = "10:10"]

/course[start = "10:10"]

moOow»

//start[../end = "11:00"]

XQuery and FLWOR Expressions

* XQuery is to XML documents what SQL is to relational tables.

+ XPath is a subset of XQuery.
» every XPath expression is a valid XQuery query

* In addition, XQuery provides FLWOR expressions.
+ similar to SQL SELECT commands

* syntax: for $fvarl in xpath_f1,
$fvar2 in Xxpath_r2,..
let $7varl := xpath_T1, ..
where condition
order by Xxpath_ol, ..
return result-format

FLWOR Expressions

for $r in //room[contains(name, "CAS")],

$c in //course
let $e := //person[contains(@enrolled, $c/@id)]
where $c/@room = $r/@id and count($e) > 20
order by $r/name
return ($r/name, $c/name)

« The for clause is like the FROM clause in SQL.

» the query iterates over all combinations of values from its
XPath expressions (like Cartesian product!)

* query above looks at combos of CAS rooms and courses

» The Tet clause is applied to each combo. from the for clause.
+ each variable gets the full set produced by its XPath expr.

 unlike a for clause, which assigns the results of the
XPath expression one value at a time

FLWOR Expressions (cont.)

for $r in //room[contains(name, "CAS")],

$c in //course
Tet $e := //person[contains(@enrolled, $c/@id)]
where $c/@room = $r/@id and count($e) > 20
order by $r/name
return ($r/name, $c/name)

The where clause is applied to the results of for and Tet.
If the where clause is true, the return clause is applied.

The order by clause can be used to sort the results.

Note: The Location of Predicates

for $r in //room[contains(name, "CAS")],

$c in //course
Tet $e := //person[contains(@enrolled, $c/@id)]
where $c/@room = $r/@id and count($e) > 20
order by $r/name
return ($r/name, $c/name)

It's sometimes possible to move components of the
where clause up into the for clause as predicates.

In the above query, we could move the first condition up:

for $r in //room[contains(name, "CAS")],
$c in //course[@room = $r/@id]
Tet $e := //person[contains(@enrolled, $c/@id)]
where count($e) > 20
order by $r/name
return ($r/name, $c/name)

return Clause

<course cid="cC20119" teacher="P123456" room="CAS 522">
<name>CS 1ll</name><start>10:10</start><end>11:00</end>
</course>

<course cid="cC20268" teacher="pP123456">
<name>CS 460</name><start>13:25</start><end>14:15</end>
</course>

$c = <course cid="C20757" teacher="pP778787" room="com 101">
<name>CS 112</name><start>11:30</start><end>12:45</end>
</course>

» Like the SELECT clause in SQL.

+ Can be used to perform something like a projection.

for $c in //course
where $c/start > "11:00"
return $c/name

= <name>CS 460</name>
<name>CS 112</name>

return Clause (cont.)

* Another example:

for $c in //course
where $c/start > "11:00"
return ($c/name, $c/start, " ')

» To return multiple elements/attributes for each item:
» separate them using a comma

+ surround them with parentheses, because the comma
operator has higher precedence and would end the FLWOR

* you can also include string literals
 above, we specify a blank line after the start time

« full elements already appear on separate lines,
so we don't need spaces for that

Reshaping the Output

* We can reshape the output by constructing new elements:

for $c in //course

where $c/start > "11:00"

return <afterll-course>
{$c/name/text(), " - ", $c/start/text()}
</afterll-course>

+ the text () function gives just the value of a simple element
+ without its start and end tags
* when constructing a new element, need curly braces
around expressions that should be evaluated
« otherwise, they'll be treated as literal text that is
the value of the new element
* here again, use commas to separate items

» because we're using text (), there are no newlines
after the name and start time

* we use a string literal to put something between them

Reshaping the Output (cont.)

<course id="c20119" teacher="pP123456" room="011">
<name>CS 1lll</name><start>10:10</start><end>11:00</end>
</course>

<course id="C20268" teacher="P123456">
<name>CS 460</name><start>13:25</start><end>14:15</end>
</course>

<course id="C20757" teacher="P778787" room="789">
<name>CS 112</name><start>11:30</start><end>12:45</end>
</course>

for $c in //course

where $c/start > "11:00"

return <afterll-course>
{$c/name/text(), " - ", $c/start/text()}
</afterll-course>

» The result will look something like this:

<afterll-course>CS 460 - 13:25</afterll-course>
<afterll-course>CS 112 - 11:30</afterll-course>

for vs. let

* Here's an example that illustrates how they differ:

for $d in document("depts.xml1")/depts/dept/deptno
Tet $e := document("emps.xml")/emps/emp[deptno = $d]
where count($e) >= 10

return <big-dept>

{
$d,
<headcount>{count($e)}</headcount>,
<avgsal>{avg($e/salary)}</avgsal>
}

</big-dept>

» the for clause assigns to $d one deptno element at a time

« for each value of $d, the 1et clause assigns to $e
the full set of emp elements from that department

» the where clause limits us to depts with >= 10 employees
* we create a new element for each such dept.
» we use functions on the set $e and on values derived from it

Nested Queries

* We can nest FLWOR expressions:
» example: group together each instructor's person info.
with the courses taught by him/her

for $p in //person[@teaches]
return <instructor-courses>
{ $p,
for $c in //course
where contains($p/@teaches, $c/@id)
return $c

}

</instructor-courses>

* result:
<instructor-courses>
<person id="P123456" teaches="C20119 C20268">
<name><last>Sullivan</last>..</name>

</person>
<course id="cC20119" teacher="P123456">

<name>CS 1lll</name> ..
</course>

</instructor-courses>

Reformatting the Results of the Previous Query

for $p in //person[@teaches]
return

<instructor>

{<name>{$p/pname/first/text(), " ", $p/pname/last/text()}

</name>,

for $c in //course

where contains($p/@teaches, $c/@id)

return <course>{$c/name/text()}</course>
}

</instructor>

* result:

<instructor>
<name>David Sullivan</name>
<course>CS 111l</course>
<course>CS 460</course>

</instructor>

Implementing an XML DBMS

* Two possible approaches:
1) build it on top of a DBMS that uses another model
* use a logical-to-logical mapping
that can accommodate any XML document
« example: define an XML-to-relational mapping

XML document > one or more tuples

2) build it directly on top of a storage engine (or file system!)
* use an appropriate logical-to-physical mapping
+ similar to what you did in PS 2, Part II!

Approach 1: Logical-to-Logical Mappings

» Possible XML-to-relational mappings:
1) use a schema that stores an entire XML document
as the value of a single attribute:
document(id, contents)
« useful if you need to preserve the exact bytes of the
original document (ex: for legal purposes)

* may also be useful if you have small documents
that are typically retrieved in their entirety

2) use a schema that encodes the tree structure
of the document
» example: a table for elements that looks something like
element(id, parent_id, name, value)

Approach 2: Logical-to-Physical Mappings

» Option 1: Store each document in a flat file.
* advantages:
+ the mapping is very simple!
+ there are many tools that allow you to manipulate XML
that is stored in this way
* it makes the data easily readable
 disadvantages?

» Option 2: make direct use of a traditional storage engine

+ get the benefits of a DBMS (indexing, transactions, etc.)
without the overhead of a logical-to-logical mapping

+ the logical-to-physical mapping is less straightforward

