
Review: Using Timestamps
for Concurrency Control

Computer Science E-66
Harvard University

David G. Sullivan, Ph.D.

Timestamp-Based Concurrency Control

• Transactions are assigned unique timestamps based on
when they start.

• The system ensures that all operations are consistent with
a serial ordering based on the timestamps.

• example: TS(T2) < TS(T1), so must be consistent with T2; T1

T2's read of A is too late:

• if this read were allowed, T2 would read T1's write of A

• in the equiv. serial schedule, it would read A's old value

 the DBMS denies the read, rolls back T2, and makes it start over

T1 T2

TS = 102
w(A)

TS = 100
r(C)

r(A)
denied

actual schedule
T1 T2

TS = 102
w(A)

…

TS = 100
r(C)
r(A)
…

equivalent serial schedule

Timestamp-Based Concurrency Control (cont.)

• Transactions are assigned timestamps based on when they start.

• Each data item D has a:

• RTS – the largest timestamp of any txn that has read D

• WTS – the largest timestamp of any txn that has written D

T1 T2 A B

TS = 220
w(A)

r(B)

TS = 230
w(A)
r(B)

RTS = WTS = 0

WTS = 220

WTS = 230

RTS = WTS = 0

RTS = 230
RTS: no change

Timestamp Rules for Reads and Writes

• When T tries to read A:

• if TS(T) < WTS(A), roll back T and restart it

• T’s read is too late

• else allow the read

• set RTS(A) = max(TS(T), RTS(A))

• When T tries to write A:

• if TS(T) < RTS(A), roll back T and restart it

• T’s write is too late

• else if TS(T) < WTS(A), ignore the write and let T continue

• in the equiv serial sched, T’s write would be overwritten

• else allow the write

• set WTS(A) = TS(T)

Ensuring Recoverability and Casecadelessness

• Transactions are assigned timestamps based on when they start.

• Each data item D has a:

• RTS – the largest timestamp of any txn that has read D

• WTS – the largest timestamp of any txn that has written D

• commit bit – used to prevent dirty reads

• true if the writer of the current value has committed

• false otherwise

T1 T2 A B

TS = 220
w(A)

r(B)
commit

TS = 230
w(A)
r(B)

commit

RTS = WTS = 0; c = true

WTS = 220; c = false

WTS = 230; c = false

c: no change
c = true

RTS = WTS = 0; c = true

RTS = 230
RTS: no change

Timestamp Rules for Reads and Writes

• When T tries to read A:

• if TS(T) < WTS(A), roll back T and restart it

• T’s read is too late (see our earlier example)

• else allow the read (but if c(A) == false, make T wait)

• set RTS(A) = max(TS(T), RTS(A))

• When T tries to write A:

• if TS(T) < RTS(A), roll back T and restart it

• T’s write is too late (see example 2 from last lecture)

• else if TS(T) < WTS(A), ignore the write and let T continue
(but if c(A) == false, make T wait)

• in the equiv serial sched, T’s write would be overwritten

• else allow the write

• set WTS(A) = TS(T) (and set c(A) to false)

when using commit bits

Other Details

• When the writer of the current value of data item A commits, we:

• set A's commit bit to true

• allow waiting txns try again

• When a txn T is rolled back, we process:

• all data elements A for which WTS(A) == TS(T)

• restore their prior state (value and timestamps)

• set their commit bits based on whether the writer of
the prior value has committed

• make waiting txns try again

• all data elements A for which RTS(A) == TS(T)

• restore their prior RTS

Example of Using Timestamps and Commit Bits

• The balance-transfer example would now proceed differently.

T1 T2 bal1 bal2

TS = 350
r(bal1)
w(bal1)

r(bal2)
w(bal2)
commit

TS = 375
r(bal1)

denied: wait

r(bal1)
and completes

RTS = WTS = 0
c = true

RTS = 350
WTS = 350; c = false

c = true
RTS = 375

RTS = WTS = 0
c = true

RTS = 350
WTS = 350; c = false

c = true

read balance1
write(balance1 – 500)

read balance2
write(balance2 + 500)

T1

read balance1
read balance2
if (balance1 + balance2 < min)

write(balance1 – fee)

T2

