
Concurrency Control

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

Goals for Schedules

• We want to ensure that schedules of concurrent txns are:

• serializable: equivalent to some serial schedule

• recoverable: ordered so that the system can safely
recover from a crash or undo an aborted transaction

• cascadeless: ensure that an abort of one transaction
does not produce a series of cascading rollbacks

• To achieve these goals, we use some type of
concurrency control mechanism.

• controls the actions of concurrent transactions

• prevents problematic interleavings

Locking

• Locking is one way to provide concurrency control.

• Involves associating one or more locks with each
database element.

• each page

• each record

• possibly even each collection

Locking Basics

• A transaction must
request and acquire
a lock for a data element
before it can access it.

• In our initial scheme,
every lock can be held
by only one txn at a time.

• As necessary, the DBMS:

• denies lock requests for elements that are currently locked

• makes the requesting transaction wait

• A transaction unlocks an element when it's done with it.

• After the unlock, the DBMS can grant the lock to a waiting txn.

• we’ll show a second lock request when the lock is granted

T2T1

l(X) denied; wait for T1

l(X) granted
r(X)
u(X)

l(X)
r(X)

w(X)
u(X)

Locking and Serializability

• Just having locks isn’t enough to guarantee serializability.

• Example: our problematic schedule can still be carried out.

T2T1

l(bal1);r(bal1)
l(bal2);r(bal2)

w(bal1)
u(bal1);u(bal2)

l(bal1);r(bal1)
w(bal1); u(bal1)

l(bal2);r(bal2)
w(bal2); u(bal2)

read balance1
write(balance1 – 500)

read balance2
write(balance2 + 500)

T1

read balance1
read balance2
if (balance1 + balance2 < min)

write(balance1 – fee)

T2

Two-Phase Locking (2PL)

• One way to ensure serializability is two-phase locking (2PL).

• 2PL requires that all of a txn’s lock actions come before
all its unlock actions.

• Two phases:

1. lock-acquisition phase:
a txn acquires locks, but it doesn't release any

2. lock-release phase:
once a txn releases a lock, it can't acquire any new ones

• Reads and writes can occur in both phases.

• provided that a txn holds the necessary locks

• 2PL is per-transaction.

• one txn could be in its lock-release phase
while another txn is still in its lock-acquisition phase

Two-Phase Locking (2PL) (cont.)

• In our earlier example, T1 does not follow the 2PL rule.

2PL would prevent
this interleaving.

• More generally, 2PL produces conflict serializable schedules.

T2T1

l(bal1);r(bal1)
l(bal2);r(bal2)

w(bal1)
u(bal1);u(bal2)

l(bal1);r(bal1)
w(bal1); u(bal1)

l(bal2);r(bal2)
w(bal2); u(bal2)

An Informal Argument for 2PL’s Correctness

• Consider schedules involving only two transactions.
To get one that is not conflict serializable, we need:

1) at least one conflict that requires T1 T2
• T1 operates first on the data item in this conflict
• T1 must unlock it before T2 can lock it: u1(A) .. l2(A)

2) at least one conflict that requires T2 T1
• T2 operates first on the data item in this conflict
• T2 must unlock it before T1 can lock it: u2(B) .. l1(B)

• Consider all of the ways these pairs of actions could be ordered:
.. u1(A) .. l2(A) .. u2(B) .. l1(B) ..
.. u2(B) .. l1(B) .. u1(A) .. l2(A) ..
.. u1(A) .. u2(B) .. l2(A) .. l1(B) ..
.. u2(B) .. u1(A) .. l1(B) .. l2(A) ..
.. u1(A) .. u2(B) .. l1(B) .. l2(A) ..
.. u2(B) .. u1(A) .. l2(A) .. l1(B) ..

• none of these are possible
under 2PL, because they
require at least one txn
to lock after unlocking.

The Need for Different Types of Locks

• With only one type of lock, overlapping transactions can't
read the same data item, even though two reads don't conflict.

• To get around this, use more than one mode of lock.

Exclusive vs. Shared Locks

• An exclusive lock allows a transaction to write or read an item.

• gives the txn exclusive access to that item

• only one txn can hold it at a given time

• xli(A) = transaction Ti requests an exclusive lock for A

• if another txn holds any lock for A,
Ti must wait until that lock is released

• A shared lock only allows a transaction to read an item.

• multiple txns can hold a shared lock for the
same data item at the same time

• sli(A) = transaction Ti requests a shared lock for A

• if another txn holds an exclusive lock for A,
Ti must wait until that lock is released

Lock Compatibility Matrix

• Used to specify when a lock request for a currently locked item
should be granted.

mode of lock
requested for item

exclusiveshared

noyesshared

nonoexclusive

mode of
existing lock
for that item

(held by a
different txn)

Examples of Using Shared and Exclusive Locks

sli(A) = transaction Ti requests a shared lock for A
xli(A) = transaction Ti requests an exclusive lock for A

• Examples:

T2T1

xl(A); w(A)

sl(B);r(B)

u(A); u(B)

sl(B); r(B)

xl(C); r(C)

w(C)
u(B); u(C)

without shared locks,T2 would need to wait
until T1 unlocked B

Note: T1 acquires an exclusive lock
before reading C. Why?

What About Recoverability / Cascadelessness?

• 2PL alone does not guarantee either of them.

• Example: 2PL?

not recoverable. why not?

not cascadeless. why not?

T2T1

xl(A); w(A)
sl(C)
u(A)

r(C); u(C)

commit

xl(A); r(A)

w(A); u(A)
commit

Strict Locking

• Strict locking makes txns hold all exclusive locks until
they commit or abort.

• doing so prevents dirty reads, which means schedules
will be recoverable and cascadeless

What else needs to change?

T2T1

xl(A); w(A)
sl(C)
u(A)

r(C); u(C)

commit

xl(A); r(A)

w(A); u(A)
commit

T2T1

xl(A); w(A)
sl(C)

r(C); u(C)

commit
u(A)

xl(A); r(A)

w(A)
commit

u(A)

Strict Locking

• Strict locking makes txns hold all exclusive locks until
they commit or abort.

• doing so prevents dirty reads, which means schedules
will be recoverable and cascadeless

• strict + 2PL = strict 2PL

T1 can't acquire the lock for A
until after T2 commits.
Thus, its read of A is not dirty!

T2T1

xl(A); w(A)
sl(C)
u(A)

r(C); u(C)

commit

xl(A); r(A)

w(A); u(A)
commit

T2T1

xl(A); w(A)
sl(C)

r(C); u(C)

commit
u(A)

xl(A); wait

xl(A); r(A)

w(A)
commit

u(A)

Rigorous Locking

• Under strict locking, it's possible to get something like this:

• Rigorous locking requires txns to hold all locks until commit/abort.

• It guarantees that transactions commit in the same order
as they would in the equivalent serial schedule.

• rigorous + 2PL = rigorous 2PL

• T3 reports A's new value.

• T1 reports A's old value,
even though it commits
after T3.

• the ordering of commits
(T2,T3,T1) is not same
as the equivalent serial
ordering (T1,T2,T3)

T3T2T1

sl(A); r(A)
commit

u(A)
print A

xl(A); w(A)
commit

u(A)

…
sl(A); r(A)

u(A)

…

commit
print A

Deadlock

• Consider the following schedule:

• This schedule produces deadlock.
• T1 is waiting for T2 to unlock A
• T2 is waiting for T1 to unlock B
• neither can make progress!

• We'll see later how to deal with this.

T2T1

xl(A);w(A)

xl(B)
denied;

wait for T1

sl(B);r(B)

sl(A)
denied;

wait for T2

Lock Upgrades

• It can be problematic to acquire
an exclusive lock earlier than
necessary.

• Instead:

• acquire a shared lock to read
the item

• upgrade to an exclusive lock
when you need to write

• may need to wait to upgrade
if others hold shared locks

• Note: we're not releasing the
shared lock before acquiring the
exclusive one. why not?

T2T1

sl(A)
waits a long
time for T1!

r(A) finally!

xl(A)
r(A)

VERY LONG
computation

w(A)
u(A)

T2T1

sl(A)
r(A) right away!

u(A)

sl(A)
r(A)

VERY LONG
computation

xl(A)
w(A)
u(A)

A Problem with Lock Upgrades

• Upgrades can lead to deadlock:

• two txns each hold a shared lock for an item
• both txns attempt to upgrade their locks
• each txn is waiting for the other to release its shared lock
• deadlock!

• Example:
T2T1

sl(A)
r(A)

xl(A)
denied;

wait for T1

sl(A)
r(A)

xl(A)
denied;

wait for T2

Update Locks

• To avoid deadlocks from lock upgrades, some systems
provide two different lock modes for reading:

• shared locks – used if you only want to read an item

• update locks – used if you want to read an item
and later update it

update lockshared lock

read the locked item
(in anticipation of
updating it later)

read the locked item what does holding this
type of lock let you do?

yesno (not in this
locking scheme)

can it be upgraded to
an exclusive lock?

only one (and thus
there can't be a
deadlock from two
txns trying to upgrade!)

an arbitrary numberhow many txns can hold
this type of lock for a
given item?

Different Locks for Different Purposes

• If you only need to read an item, acquire a shared lock.

• If you only need to write an item, acquire an exclusive lock.

• If you need to read and then write an item:

• acquire an update lock for the read

• upgrade it to an exclusive lock for the write

• this sequence of operations is sometimes called
read-modify-write (RMW)

Compatibility Matrix with Update Locks

• When there are one or more shared locks on an item,
a txn can still acquire an update lock for that item.

• allows for concurrency on the read portion of RMW txns

• There can't be more than one update lock on an item.

• prevents deadlocks when upgrading from update to exclusive

• If a txn holds an update lock on an item, other txns
can't acquire any new locks on that item.
• prevents the RMW txn from waiting indefinitely to upgrade

mode of lock requested for item

updateexclusiveshared

yesnoyesshared

nononoexclusive

nononoupdate

mode of
existing lock
for that item

(held by a
different txn)

Examples of Using Update Locks
uli(A) = Ti requests an update lock for AT3T2T1

 request A?

 request B

 request C

 request D

sl(A)
r(A)

ul(C)
r(C)

sl(A)
r(A)

ul(B)
r(B)

xl(A)
w(A)

sl(B)
r(B)
ul(C)
r(C)

xl(C)
w(C)
…

Detecting and Handling Deadlocks

• When DBMS detects a deadlock, it roll backs one of the
deadlocked transactions.

• Can use a waits-for graph to detect the deadlock.
• the vertices are the transactions
• an edge from T1 T2 means

T1 is waiting for T2 to release a lock
• a cycle indicates a deadlock

• Example:
T3T2T1

xl(C)

sl(A)
denied;

wait for T1
sl(B)
sl(C)

denied;
wait for T3

xl(A)

xl(B)
denied;

wait for T2

T3

T1 T2

cycle – deadlock!

• Would the following schedule produce deadlock?

r1(B); w1(B); r3(A); r2(C); r2(B); r1(A); w1(A); w3(C); w2(A); r1(C); w3(A)

• assume: no update locks;
a lock for an item is acquired just before it is first needed

Another Example

T3T2T1

sl(A); r(A)

sl(C); r(C)

sl(B); r(B)
xl(B); w(B)

T3

T1 T2

• Would the following schedule produce deadlock?

w1(A); w3(B); r3(C); r2(D); r1(D); w1(D); w2(C); r3(A); w2(A)

• assume: no update locks;
a lock for an item is acquired just before it is first needed

Extra Practice (try this later on your own!)

T3T2T1

T3

T1 T2

Optimistic Concurrency Control

• Locking is pessimistic.

• assumes serializability will be violated

• prevents transactions from performing actions that might
violate serializability

• example:

• There are other approaches that are optimistic.

• assume serializability will be maintained

• only interfere with a transaction if it actually does something
that violates serializability

• We’ll look at one such approach – one that uses timestamps.

T2T1

xl(A); w(A)

xl(B)
sl(B); r(B)

…
denied, because T1
might read B again

Timestamp-Based Concurrency Control

• In this approach, the DBMS assigns timestamps to txns.

• TS(T) = the timestamp of transaction T

• the timestamps must be unique

• TS(T1) < TS(T2) if and only if T1 started before T2

• The system ensures that all operations are consistent with
a serial ordering based on the timestamps.

• if TS(T1) < TS(T2), the DBMS only allows actions that
are consistent with the serial schedule T1; T2

Timestamp-Based Concurrency Control (cont.)

• Examples of actions that are not allowed:

• example 1:

T2T1

TS = 100
r(C)

r(A)

TS = 102
w(A)

not allowed

• T2 starts before T1

• thus, T2 comes before T1 in the
equivalent serial schedule (see left)

• in the serial schedule,
T2 would not see see T1's write

• thus, T2's read should have come before
T1's write, and we can't allow the read

• we say that T2’s read is too late

T2T1

TS = 100
r(C)
r(A)
...

TS = 102
w(A)

...

actual schedule

equivalent serial schedule

Timestamp-Based Concurrency Control (cont.)

• Examples of actions that are not allowed:

• example 2:

T2T1

TS = 209
r(B)

TS = 205
r(A)

w(B)

not allowed

• T1 starts before T2

• thus, T1 comes before T2 in the
equivalent serial schedule (see left)

• in the serial schedule,
T2 would see T1's write

• thus, T1's write should have come before
T2's read, and we can't allow the write

• we say that T1’s write is too late

T2T1

TS = 209
r(B)
...

TS = 205
r(A)
w(B)

...

actual schedule

equivalent serial schedule

Timestamp-Based Concurrency Control (cont.)

• When a txn attempts to perform an action that is inconsistent
with a timestamp ordering:

• the offending txn is rolled back

• it is restarted with a new, larger timestamp

• With a larger timestamp, the txn comes later in the
equivalent serial ordering.

• allows it to perform the offending operation

• Rolling back the txn ensures that all of its actions correspond
to the new timestamp.

Timestamps on Data Elements

• To determine if an action should be allowed, the DBMS
associates two timestamps with each data element:

• a read timestamp:
RTS(A) = the largest timestamp of any txn that has read A
• the timestamp of the reader that comes latest

in the equivalent serial ordering

• a write timestamp:
WTS(A) = the largest timestamp of any txn that has written A
• the timestamp of the writer that comes latest

in the equivalent serial ordering
• the timestamp of the txn that wrote A's current value

Timestamp Rules for Reads

• When T tries to read A:

• if TS(T) < WTS(A), roll back T and restart it

• T comes before the txn that wrote A,
so T shouldn't be able to see A’s current value

• T’s read is too late (see our earlier example 1)

• else allow the read

• T comes after the txn that wrote A, so the read is OK

• the system also updates RTS(A):

RTS(A) = max(TS(T), RTS(A))

• why can't we just set RTS(A) to T's timestamp?

Timestamp Rules for Reads (cont.)

• Example: assume that T1 wants to read A,
and we have the following timestamps:

TS(T1) = 30 WTS(A) = 10

TS(T2) = 50 RTS(A) = 50

• T1 started before T2 (30 < 50)

• thus T1 comes before T2 in the equivalent serial ordering

• T2 has already read A. How do we know? RTS(A) = TS(T2)

• Despite that, it's okay for T1 to read A.

• reads don't conflict, so we don't care about the
equivalent serial ordering of two readers of an item

• what matters is that T1 comes after the writer
of A's current value (30 > 10)

Timestamp Rules for Writes

• When T tries to write A:

• if TS(T) < RTS(A), roll back T and restart it

• T comes before the txn that read A, so that other txn
should have read the value T wants to write

• T’s write is too late (see our earlier example 2)

• else if TS(T) < WTS(A), ignore the write and let T continue

• T comes before the txn that wrote A's current value

• thus, in the equivalent serial schedule,
T's write would have been overwritten by A's current value

• else allow the write

• how should the system update WTS(A)?

Thomas Write Rule

• The policy of ignoring out-of-date writes is known as the
Thomas Write Rule:

…else if TS(T) < WTS(A), ignore the write and let T continue

• What if there is a txn that should have read A between
the two writes? It's still okay to ignore T's write of A.

• example:
• TS(T) = 80, WTS(A) = 100 we ignore T's write of A

what if txn U with TS(U) = 90 is supposed to read A?

• if U had already read A, Thomas write rule wouldn't apply:

• RTS(A) = 90

• T would be rolled back because TS(T) < RTS(A)

• if U tries to read A after we ignore T's write:

• U will be rolled back because TS(U) < WTS(A)

Example of Using Timestamps

• They prevent our problematic balance-transfer example.

what’s the problem here?

bal2bal1T2T1

RTS = WTS = 0

RTS = 375

RTS: no change

RTS = WTS = 0

RTS = 350
WTS = 350

RTS = 375
WTS = 375

TS = 375
r(bal1); r(bal2)

w(bal1)

TS = 350
r(bal1)
w(bal1)

r(bal2)
w(bal2)

denied:rollback

read balance1
write(balance1 – 500)

read balance2
write(balance2 + 500)

T1

read balance1
read balance2
if (balance1 + balance2 < min)

write(balance1 – fee)

T2

Preventing Dirty Reads Using a Commit Bit

• We associate a commit bit c(A) with each data element A.

• tells us whether the writer
of A's value has committed

• initially, c(A) is true

• When a txn is allowed to write A:

• set c(A) to false

• update WTS(A) as before

• If the timestamps would allow
a txn to read A but c(A) is false,
the txn is made to wait.

• preventing a dirty read!

• When A's writer commits, we:

• set c(A) to true

• allow waiting txns try again

AT2T1

RTS = 0
WTS = 0
c = true

RTS = 200

c = false
WTS = 200

c = true

TS = 210
r(A)

denied:
wait

r(A)?

TS = 200

r(A)

w(A)

commit

Preventing Dirty Reads Using a Commit Bit (cont.)

• If a txn is allowed to write A
and c(A) is already false:

• c(A) remains false

• update WTS(A) as before

• If the timestamps would cause
a txn's write of A to be ignored
but c(A) is false, the txn must wait.

• we'll need its write if the
writer of A's current value
is rolled back

AT2T1

RTS = 0
WTS = 0
c = true

c = false
WTS = 400

c stays false
WTS = 450

c = true

TS = 400
w(A)

w(A)
denied:

wait

w(A)
ignored

…

TS = 450
w(A)

commit

Preventing Dirty Reads Using a Commit Bit (cont.)

• Note: c(A) remains false until
the writer of the current value
commits.

• Example: what if T2 had
committed after T1's write?

AT2T1

RTS = 0
WTS = 0
c = true

c = false
WTS = 400

c stays false
WTS = 450

TS = 400
w(A)

commit
denied:

wait

w(A)
ignored

…

TS = 450
w(A)

Preventing Dirty Reads Using a Commit Bit (cont.)

• What happens when a txn T
is rolled back?

• restore the prior state
(value and timestamps)
of all data elements of which
T is the most recent writer

• set the commit bits of those
elements based on whether
the writer of the prior value
has committed

• make waiting txns try again

• in addition, if there were a
data element B for which
RTS(B) == TS(T), we would
restore its old RTS value

AT2T1

RTS = 0
WTS = 0
c = true

c = false
WTS = 400

c stays false
WTS = 450

WTS = 400

c = false

no changes

TS = 400
w(A)

w(A)
denied:

wait

w(A)
allowed!

TS = 450
w(A)

roll back

Example of Using Timestamps and Commit Bits

• The balance-transfer example would now proceed differently.

bal2bal1T2T1

RTS = WTS = 0
c = true

RTS = 350
WTS = 350; c = false

c = true

RTS = WTS = 0
c = true

RTS = 350
WTS = 350; c = false

c = true
RTS = 375

TS = 375
r(bal1)

denied: wait

r(bal1)
and completes

TS = 350
r(bal1)
w(bal1)

r(bal2)
w(bal2)
commit

read balance1
write(balance1 – 500)

read balance2
write(balance2 + 500)

T1

read balance1
read balance2
if (balance1 + balance2 < min)

write(balance1 – fee)

T2

Multiversion Timestamp Protocol

• To reduce the number of rollbacks, the DBMS can keep old
versions of data elements, along with the associated timestamps.

• When a txn T tries to read A, it's given the version of A that it
should read, based on the timestamps.

• the DBMS never needs to roll back a read-only transaction!

A(105)A(0)T3T2T1

created
RTS = 0; WTS = 105
c = false; val = “bar”

c = true

RTS = 112

RTS = WTS = 0
c = true; val = “foo”

RTS = 105

no change

TS = 112
r(A)

get A(105)

TS = 101

r(A): get A(0)

TS = 105

r(A)
w(A)

commit

two different versions of A

Multiversion Timestamp Protocol (cont.)

• Because each write creates a new version,
the WTS of a given version never changes.

• The DBMS maintains RTSs and commit bits for each version,
and it updates them using the same rules as before.

• If txn T attempts to write A:

• find the version of A that T should be overwriting
(the one with the largest WTS < TS(T))

• compare TS(T) with the RTS of that version

• example: txn T (TS = 50)
wants to write A
• it should be overwriting A(0)
• show we allow its write

and create A(50)?

A(105)A(0)

RTS = 0RTS = 75

Multiversion Timestamp Protocol (cont.)

• If T's write of A is not too late:

• create a new version of A with WTS = TS(T)

• Writes are never ignored.

• there may be active txns that should read that version

• Versions can be discarded as soon as there are no active
transactions that could read them.

• can discard A(t1) if:

• there is another, later version, A(t2), with t2 > t1

and

• there is no active transaction with a TS < t2

• example: we can discard A(0)
as soon as …?

A(105)A(0)

RTS = 0RTS = 75

Locking vs. Timestamps

• Advantages of timestamps:

• txns spend less time waiting

• no deadlocks

• Disadvantages of timestamps:

• can get more rollbacks, which are expensive

• may use somewhat more space to keep track of timestamps

• Advantages of locks:

• only deadlocked txns are rolled back

• Disadvantages of locks:

• unnecessary waits may occur

The Best of Both Worlds

• Combine 2PL and multiversion timestamping!

• Transactions that perform writes use 2PL.

• their actions are governed by locks, not timestamps

• thus, only deadlocked txns are rolled back

• Multiple versions of data elements are maintained.

• each write creates a new version

• the WTS of a version is based on when the writer commits,
not when it started

• Read-only transactions do not use 2PL.

• they are assigned timestamps when they start

• when T reads A, it gets the version from right before T started
• will only get a version whose writer has committed

• read-only txns never need to wait or be rolled back!

Summary: Timestamp Rules for Reads and Writes

• When T tries to read A:

• if TS(T) < WTS(A), roll back T and restart it

• T’s read is too late

• else allow the read

• set RTS(A) = max(TS(T), RTS(A))

• When T tries to write A:

• if TS(T) < RTS(A), roll back T and restart it

• T’s write is too late

• else if TS(T) < WTS(A), ignore the write and let T continue

• in the equiv serial sched, T’s write would be overwritten

• else allow the write

• set WTS(A) = TS(T)

when not using commit bits

Summary: Timestamp Rules for Reads and Writes

• When T tries to read A:

• if TS(T) < WTS(A), roll back T and restart it

• T’s read is too late

• else allow the read (but if c(A) == false, make it wait)

• set RTS(A) = max(TS(T), RTS(A))

• When T tries to write A:

• if TS(T) < RTS(A), roll back T and restart it

• T’s write is too late

• else if TS(T) < WTS(A), ignore the write and let T continue
(but if c(A) == false, make it wait)

• in the equiv serial sched, T’s write would be overwritten

• else allow the write

• set WTS(A) = TS(T) (and set c(A) to false)

when using commit bits

Summary: Other Details for Commit Bits

• When the writer of the current value of data item A commits, we:

• set c(A) to true

• allow waiting txns try again

• When a txn T is rolled back, we process:

• all data elements A for which WTS(A) == TS(T)

• restore their prior state (value and timestamps)

• set their commit bits based on whether the writer of
the prior value has committed

• make waiting txns try again

• all data elements A for which RTS(A) == TS(T)

• restore their prior RTS

Extra Practice Problem 1

• How will this schedule be executed?
w1(A); w2(A); r3(B); w3(B); r3(A); r2(B); w1(B); r2(A)

BAT3T2T1

RTS = WTS = 0
c = true

RTS = WTS = 0
c = true

Extra Practice Problem 2

• How will this schedule be executed?
r1(B); r2(B); w1(B); w3(A); w2(A); w3(B); commit3; r2(A)

BAT3T2T1

RTS = WTS = 0
c = true

RTS = WTS = 0
c = true

denied:
wait

denied:
roll back

denied:
roll back

