Transactions and Schedules

Harvard Extension School
Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

Transactions: An Overview

» A transaction is a sequence of operations that is treated as
a single logical operation. (abbreviation = txn)

» Example: a balance transfer

transaction T1

read balancel
write(balancel - 500)
read balance?2
write(balance2 + 500)

» Transactions are all-or-nothing: all of a transaction’s changes
take effect or none of them do.

Executing a Transaction

1. Issue a command indicating the start of the transaction.

2. Perform the operations in the transaction.
* in SQL: SELECT, UPDATE, etc.

3. End the transaction in one of two ways:
« commit it: make all of its results visible and persistent
« all of the changes happen

* roll it back / abort it: undo all of its changes,
returning to the state before the transaction began

* none of the changes happen

Why Do We Need Transactions?

» To prevent problems stemming from system failures.
* example: a balance transfer

read balancel
write(balancel - 500)
CRASH

read balance?2
write(balance2 + 500)

Why Do We Need Transactions? (cont.)

» To ensure that operations performed by different users don’t
overlap in problematic ways.

+ example: this should not be allowed

user 1

read balancel

write(balancel - 500) | user2

read balancel

read balance2

if (balancel+balance2 < min)
write(balancel - fee)

read balance2
write(balance2 + 500)

ACID Properties

» A transaction has the following “ACID” properties:
Atomicity: either all of its changes take effect or none do

Consistency preservation: its operations take the database
from one consistent state to another

» consistent = satisfies the constraints from the schema,
and any other expectations about the values in the database

Isolation: it is not affected by and does not affect other
concurrent transactions

Durability: once it commits, its changes survive failures

* The user plays a role in consistency preservation.
* ex: add to balance2 the same amnt subtracted from balance1
» the DBMS helps by rejecting changes that violate constraints
* guaranteeing the other properties also preserves consistency

Atomicity and Durability

» These properties are guaranteed by the part of the system
that performs logging and recovery.

» After a crash, the recovery subsystem:
* redoes as needed all changes by committed txns
* undoes as needed all changes by uncommitted txns
« restoring the old values of the changed data items

+ We’'ll look more at logging and recovery later in the semester.

Isolation

» To guarantee isolation, the DBMS has to prevent problematic

interleavings like the one we saw earlier:

transaction T1

read balancel .

write(balancel - 500) | transaction T2

read balancel

read balance2

if (balancel+balance2 < min)
write(balancel - fee)

read balance?2
write(balance2 + 500)

» One possibility: enforce a serial schedule (no interleaving).

read balancel read balancel

write(balancel - 500) read balance?2

read balance2 if (balancel+balance2 < min)

write(balance2 + 500) or write(balancel - fee)

read balancel read balancel

read balance?2 write(balancel - 500)

if (balancel +balance2 < min) read balance2
write(balancel - fee) write(balance2 + 500)

» doesn’t make sense for performance reasons. why?

Serializability

» A serializable schedule is one whose effects are equivalent
to the effects of some serial schedule. For example:

schedule 1 schedule 2 (a serial schedule)
transaction T1 transaction T1
read X read X
X=X4+5 . X=X4+35
write X transaction T2 write X
read Y read Y
Y=Y+ 2 Y=Y+ 6
read v write Y write Y transaction T2
Y=Y+ 6 read Y
write Y Y=Y+2
read X write Y
X=X+ 10 read X
write X X =X+ 10
write X
» Xisincreased by 15 » Xisincreased by 15
* Yisincreased by 8 * Yisincreased by 8

* Because the effects schedule 1 are equivalent to the effects
of a serial schedule (schedule 2), schedule 1 is serializable.

Not All Schedules Are Serializable!

» Schedule 1 is a special case.

schedule 1 schedule 2 (a serial schedule)
transaction T1 transaction T1
read X read X
X=X+ 5 . X=X+5
write X transaction T2 write X
read v read Y
Y=Y+ 2 Y=Y+ 6
read Y write ¥ write ¥ transaction T2
Y=Y+ 6 read Y
write Y Y=Y+ 2
read X write Y
X =X+ 10 read X
write X X =X+ 10
write X

* both T1 and T2 use addition to change the values of X and Y
+ addition is commutative

* thus, the order in which T1 and T2 make their changes
doesn't matter!

Not All Schedules Are Serializable! (cont.)

» If we change T2 so that it uses multiplication,
the original interleaving is no longer serializable.

schedule 1B

schedule 2B schedule 3
transaction T1 transaction T1 transaction T2B
read X read X : read Y
X=X+5 - X=X+ Y=Y * 2
write X transaction T2B write X write Y
read Y read Y read X
Y=Y %2 Y=Y+6 X=X *10
read v write Y write Y transaction T2B| transaction T1| Write X
Y=Y+ 6 read v read X
write Y Y=Y%2 X=X+5
read X write Y write X
X = X * 10 read X read Y
write X X =X *10 Y=Y+ 6
write X write Y
* X2>10(X +5) * X2 10(X +5) e X2>10X+5
e Y2>2Y+6 * Y>2(Y+6) c Y2>2Y+6

» Because the effects schedule 1B are not equivalent to the effects
of any serial schedule of T1+T2B, schedule 1B is not serializable.

Conventions for Schedules

» We abstract all transactions into sequences of reads and writes.

* example:
T2 To
read balancel
read balance? ;ggggég
if (balancel+balance2 < min) - write(a)
write(balancel - fee)

* we use a different variable for each data item
that is read or written

* we ignore:
« the actual meaning and values of the data items
« the nature of the changes that are made to them

+ things like comparisons that a transaction does
in its own address space

Conventions for Schedules (cont.)

» We can represent a schedule using a table.

T T,

» one column for each transaction r(A)
+ operations are performed in the order w(A) "B)
given by reading from top to bottom r(A)
w(A)

+ We can also write a schedule on a single line using this notation:
r(A) = transaction T, reads A
w;(A) = transaction T, writes A
» example for the table above:
ri(A); 1a(B); wi(A); r(A); wy(A)

Serializability of Abstract Schedules

How can we determine if an abstract schedule is serializable?

+ given that we don't know the exact nature of the changes
made to the data

+ We'll focus on the following:

« which transaction is the last one to write each data item
- that's the version that will be seen after the schedule

* which version of a data item is read by each transaction

« assume that if a transaction reads a different version,
its subsequent behavior might be different

Conflicts in Schedules

A conflict is a pair of actions that can't be swapped without
potentially changing the behavior of one or more transactions.

Examples in the schedule at right: T, T,
* w,(A) and ry(A) r(B)
* swapping them leads T2 to read a w(A))
different value of A r(A)
+ this may cause T2 to behave differently v“:ﬁé}
- w,(B) and w,(B) w(B)

* swapping them means later readers of B
will see a different value of B

+ this may cause them to behave differently

r,(B) and r,(B) do not conflict. why?

Which Actions Conflict?

Actions in different transactions conflict if:
1) they involve the same data item
and 2) at least one of them is a write

Pairs of actions that do conflict (assume i !=j):
* W(A); ri(A) the value read by T; may change if we swap them
* ri(A); w(A) the value read by T; may change if we swap them
* W(A); w(A) subsequent reads may change if we swap them
+ two actions from the same txn (their order is fixed by the client)

Pairs of actions that don’t conflict:

* 1i(A); r(A) — two reads of the same item by different txns
* ri(A); r(B)
* ri(A); wy(B)
* Wi(A); ri(B)
Wi(A); wi(B)

operations on two different items
by different txns

Conflict Serializability

» Rather than ensuring serializability, it's easier to ensure
a stricter condition known as conflict serializability.

« A schedule is conflict serializable if we can turn it into a
serial schedule by swapping pairs of consecutive actions
that don’t conflict.

Example of a Conflict Serializable Schedule

ro(A); r1(A); ro(B); wa(A); wy(B); r4(B); wy(B) T, T, T, T,
—) (A
ro(A); 12(B); 11(A); Wy(A); W(B); 1y(B); wi(B) r(A) r(B)
N | E) (|)
A B) B wi e ®iwe® Y e | R
N A r(B) r(B)
ra(A); 12(B); Wy(BY; ry(A); wi(A); ry(B); wy(B) w(®) w(B)

« The final schedule is referred to as an equivalent serial schedule.
* serial — all of T2, followed by all of T1

* equivalent — it produces the same results as
the original schedule

Testing for Conflict Serializability

Because conflicting pairs of actions can't be swapped,
they impose constraints on the order of the txns
in an equivalent serial schedule.

« example: if a schedule includes w,(A) ... ry(A),
T1 must come before T2 in any equivalent serial schedule

To test for conflict serializability:
» determine all such constraints
* make sure they aren’t contradictory

Example: ry(A); ry(A); ro(B); wq(A); wy(B); r4(B); wy(B)

r,(A) ... wy(A) means T2 must come before T1 o

ro(B) ... w;(B) means T2 must come before T1 22 fh?;“;iﬁﬁéﬁ';ﬁs
W,(B) ... r{(B) means T2 must come before T1 equivalent to the
w,(B) ... wy(B) means T2 must come before T1 serial ordering T2 T4

Thus, this schedule is conflict serializable.

m o o » »

Testing for Conflict Serializability (cont.)
What about this schedule? r,(B); w,(B); ro(B); ro(A); wyo(A); r4(A)

Which of the following pairs of actions from this schedule conflict?
(choose all that apply)

r1(B); ro(B)
ri(B); wa(A)
w;(B); ry(B)
ra(B); ra(A)
Wo(A); 14(A)

Using a Precedence Graph

» Tests for conflict serializability can use a precedence graph.

« the vertices/nodes are the transactions
» add an edge for each precedence constraint: T1 > T2 means
T1 must come before T2 in an equivalent serial schedule

Example: r,(A); r3(A); ry(B); wy(A); wy(B); r5(B)

ry(A) ... wu(A) means T2 > T4 0 @
r3(A) ... wy(A) means T3 > T4
r{(B) ... wy(B) means T1 > T2 @ @

Wy(B) ... r3(B) means T2 > T3

 After the graph is constructed, we test for cycles

(i.e., paths of the form A > ... > A).
« if the graph is acyclic, the schedule is conflict serializable
+ use the constraints to determine an equivalent serial schedule
(in this case: T1;T2;T3;T4)
« if there's a cycle, the schedule is not conflict serializable

More Examples
Determine if the following are conflict serializable:
* 14(A); 13(A); 11(B); Wo(A); T4(A); Wo(B); wa(C); wy(C); 14(C)

ri(A) ... wy(A) means T1 > T2 a @
means T3 > T2 'v‘

ra(A) ... Wy(A

r{(B)... wy(B) means T1 > T2

Wy(A) ... r,(A) means T2 > T4 @‘Q
W5(C)...w,(C) means T3 > T4

W3(C) ... 14(C) means T3 > T1 cycle: T1 T2 >T4 >T1
Wy(C) ... 1y(C) means T4 > T1 not conflict serializable

* 11(A); W3(A); Wy(A); Wo(B); rx(B); r4(B); r4(B)
r{(A) ... wy(A) means T1 > T3

ri(A) ... w,(A) means T1 > T4

W5(A) ... wy(A) means T3 > T4

W,(B) ... r,(B) means T2 > T1 @ @
W2(B) ... ry(B) means T2 > T4 no cycles, so conflict serializable.

equivalentto T2, T1; T3; T4

Conflict Serializability vs. Serializability

Conflict serializability is a sufficient condition for serializability,

but it's not a necessary condition.

« all conflict serializable schedules are serializable
* not all serializable schedules are conflict serializable

Consider the following schedule involving three txns:

It is not conflict serializable, because: T T | T
r(A) ... wy;(A) means T, > T, (A) "A)
W4(A) ... Wy(A) means T, 2> T, r(B)

W(A)
It is serializable because its effects are r(B)
. : W(A)

equivalent to either w(A)

Ty Ty Ty 0or Ty Ty T3 why?
Recoverability

While serializability is important,

it isn’t enough for full isolation. T (T/i)

.

Consider the serializable schedule at right. 1(B) W)

+ includes "c" actions that indicate when w(A)

the transactions commit %RASH
| ¢

Imagine that the system crashes:
» after T1’'s commit
« before T2's commit

During recovery from the crash, the system:
* keeps all of T1’s changes,
because it committed before the crash
* undoes all of T2's changes,
because it didn't commit before the crash

Recoverability (cont.)

» This is problematic!
* T1reads T2's write of B

* it then performs actions that may
be based on the new value of B

* during recovery from the crash,

T2 is rolled back
=>» B's old value is restored

* it's possible T1 would have behaved
differently if it had read B's old value

« jt's too late to roll back T1,

because it has already committed!

r(B)
w(A)

r(A)
w(B)

CRASH
| ¢

+ We say that this schedule is unrecoverable.

« if a crash occurs between the two commits,
the process of recovering from the crash

could lead to problematic results

* |n a recoverable schedule,

Recoverability (cont.)

if T1 reads a value written by T2,

T1 must commit after T2 commits.

» This allows us to safely recover

from a crash at any point:

T

T2

r(B)
w(A)

c
CRASH

r(A)
w(B)

[

the reader of

the changed value
survives the crash,
but so does the writer

T

T2

r(B)
w(A)

c

CRASH

r(A)
w(B)

C

the writer of the

changed value
is rolled back,

but so is the reader

unrecoverable

recoverable

T, T,

T

Tz

r(A)
w(B)

r(B) =) | r(B)

W(A)

W(A)

r(A)
w(B)

| T

r(A)
w(B)
r(B)
w(A)

C
CRASH
c |

the reader is rolled back and

the writer isn't, but that's okay
since the writer didn't base its
actions on what the reader did

Dirty Reads and Cascading Rollbacks

Dirty data is data written by an uncommitted txn.
* it remains dirty until the txn is either:

+ committed: in which case the data is no longer dirty
and it is safe for other txns to read it

* rolled back (either voluntarily or by the DBMS):
in which case the write of the dirty data is undone

A dirty read is a read of dirty data.

Dirty reads can lead to cascading rollbacks.

« if the writer of the dirty data is
rolled back, the reader must be, too

Dirty Reads and Cascading Rollbacks (cont.)

We made our earlier schedule recoverable by switching
the order of the commits:

T, T, T, T,
r(A) r(A)
w(B) w(B)
r(B) ==) | r(B)
w(B) w(B)
(o C
[+ C

Could the revised schedule lead to a cascading rollback?

To get a casecadeless schedule, don't allow dirty reads.

Goals for Schedules

« We want to ensure that schedules of concurrent txns are:
* serializable: equivalent to some serial schedule

* recoverable: ordered so that the system can safely
recover from a crash or undo an aborted transaction

» cascadeless: ensure that rolling back one transaction
does not produce a series of cascading rollbacks

» To achieve these goals, we use some type of
concurrency control mechanism.

* controls the actions of concurrent transactions
* prevents problematic interleavings

Extra Practice

* Is the schedule at right:

T1 TZ
» conflict serializable? r(B)
r(B)
w(B)
W(A)
r(A)
C
(o3

 serializable?

* recoverable?

» cascadeless?

Extra Practice

What scenarios involving the schedule T, [T, | T
at right could produce cascading rollbacks? (©) w(C)
w(B)
r(B)
W(A)
r(A)

oo w »

Is This Schedule Conflict Serializable?
Draw the precedence graph to find out!
W;(A); ra(B); ra(A); 14(A); Wa(B); 14(B); wy(C); ra(D); wa(C)

@
@)

@)

Yes. It is equivalent to the serial schedule T1;T2;T3;T4

Yes. It is equivalent to the serial schedule T1;T2;T4;T3
No. The graph includes the cycle T1 > T4 > T2 > T1
No. The graph includes the cycle T1 > T2 > T4 > T1

What If We Add This Write?

» Draw the precedence graph to find out!

W;(A); ra(B); ra(A); 14(A); Wa(B); 14(B); Wy(C); r3(D); wa(C); wy(D)
w,(A) ... r;(A) means T1 > T3
w:(A) rz(A) means T1 > T2 a @
Wy(A) ... ry(A) means T1 > T4

Wy(B) ... ry(B) means T2 > T4 @ @
W,(C)...w3(C) means T4 > T3

