
Transactions and Schedules

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

Transactions: An Overview

• A transaction is a sequence of operations that is treated as
a single logical operation. (abbreviation = txn)

• Example: a balance transfer

• Transactions are all-or-nothing: all of a transaction’s changes
take effect or none of them do.

read balance1
write(balance1 - 500)
read balance2
write(balance2 + 500)

transaction T1

Executing a Transaction

1. Issue a command indicating the start of the transaction.

2. Perform the operations in the transaction.
• in SQL: SELECT, UPDATE, etc.

3. End the transaction in one of two ways:

• commit it: make all of its results visible and persistent

• all of the changes happen

• roll it back / abort it: undo all of its changes,
returning to the state before the transaction began

• none of the changes happen

Why Do We Need Transactions?

• To prevent problems stemming from system failures.

• example: a balance transfer

read balance1
write(balance1 - 500)
CRASH
read balance2
write(balance2 + 500)

Why Do We Need Transactions? (cont.)

• To ensure that operations performed by different users don’t
overlap in problematic ways.

• example: this should not be allowed

read balance1
write(balance1 – 500)

read balance2
write(balance2 + 500)

user 1

read balance1
read balance2
if (balance1 + balance2 < min)

write(balance1 – fee)

user 2

ACID Properties

• A transaction has the following “ACID” properties:
Atomicity: either all of its changes take effect or none do

Consistency preservation: its operations take the database
from one consistent state to another

• consistent = satisfies the constraints from the schema,
and any other expectations about the values in the database

Isolation: it is not affected by and does not affect other
concurrent transactions

Durability: once it commits, its changes survive failures

• The user plays a role in consistency preservation.

• ex: add to balance2 the same amnt subtracted from balance1

• the DBMS helps by rejecting changes that violate constraints

• guaranteeing the other properties also preserves consistency

Atomicity and Durability

• These properties are guaranteed by the part of the system
that performs logging and recovery.

• After a crash, the recovery subsystem:

• redoes as needed all changes by committed txns

• undoes as needed all changes by uncommitted txns

• restoring the old values of the changed data items

• We’ll look more at logging and recovery later in the semester.

Isolation

• To guarantee isolation, the DBMS has to prevent problematic
interleavings like the one we saw earlier:

• One possibility: enforce a serial schedule (no interleaving).

• doesn’t make sense for performance reasons. why?

read balance2
read balance1
if (balance1 + balance2 < min)

write(balance1 – fee)

read balance2
read balance1
if (balance1 + balance2 < min)

write(balance1 – fee)or

read balance1
write(balance1 – 500)

read balance2
write(balance2 + 500)

read balance1
read balance2
if (balance1 + balance2 < min)

write(balance1 – fee)

1
2

1
2

transaction T1

transaction T2

read balance1
write(balance1 – 500)
read balance2
write(balance2 + 500)

read balance1
write(balance1 – 500)
read balance2
write(balance2 + 500)

Serializability

• A serializable schedule is one whose effects are equivalent
to the effects of some serial schedule. For example:

• X is increased by 15

• Y is increased by 8

• Because the effects schedule 1 are equivalent to the effects
of a serial schedule (schedule 2), schedule 1 is serializable.

transaction T1

transaction T2

schedule 1

transaction T1

transaction T2

schedule 2 (a serial schedule)

• X is increased by 15

• Y is increased by 8

read X
X = X + 5
write X
read Y
Y = Y + 6
write Y

read Y
Y = Y + 2
write Y
read X
X = X + 10
write X

read X
X = X + 5
write X

read Y
Y = Y + 6
write Y

read Y
Y = Y + 2
write Y

read X
X = X + 10
write X

Not All Schedules Are Serializable!

• Schedule 1 is a special case.

• both T1 and T2 use addition to change the values of X and Y

• addition is commutative

• thus, the order in which T1 and T2 make their changes
doesn't matter!

transaction T1

transaction T2

schedule 1

transaction T1

transaction T2

schedule 2 (a serial schedule)

read X
X = X + 5
write X
read Y
Y = Y + 6
write Y

read Y
Y = Y + 2
write Y
read X
X = X + 10
write X

read X
X = X + 5
write X

read Y
Y = Y + 6
write Y

read Y
Y = Y + 2
write Y

read X
X = X + 10
write X

Not All Schedules Are Serializable! (cont.)

• If we change T2 so that it uses multiplication,
the original interleaving is no longer serializable.

• X  10(X + 5)

• Y  2Y + 6

• Because the effects schedule 1B are not equivalent to the effects
of any serial schedule of T1+T2B, schedule 1B is not serializable.

transaction T1

schedule 1B

transaction T1

schedule 2B

read X
X = X + 5
write X
read Y
Y = Y + 6
write Y

read Y
Y = Y * 2
write Y
read X
X = X * 10
write X

read X
X = X + 5
write X

read Y
Y = Y + 6
write Y

read Y
Y = Y * 2
write Y

read X
X = X * 10
write X

transaction T1

schedule 3

read X
X = X + 5
write X
read Y
Y = Y + 6
write Y

read Y
Y = Y * 2
write Y
read X
X = X * 10
write X

transaction T2B

transaction T2B

transaction T2B

• X  10(X + 5)

• Y  2(Y + 6)

• X  10X + 5

• Y  2Y + 6

Conventions for Schedules

• We abstract all transactions into sequences of reads and writes.

• example:

• we use a different variable for each data item
that is read or written

• we ignore:

• the actual meaning and values of the data items

• the nature of the changes that are made to them

• things like comparisons that a transaction does
in its own address space

read balance1
read balance2
if (balance1 + balance2 < min)

write(balance1 – fee)

T2

read(A)
read(B)
write(A)

T2

Conventions for Schedules (cont.)

• We can represent a schedule using a table.

• one column for each transaction

• operations are performed in the order
given by reading from top to bottom

• We can also write a schedule on a single line using this notation:

ri(A) = transaction Ti reads A
wi(A) = transaction Ti writes A

• example for the table above:

r1(A); r2(B); w1(A); r2(A); w2(A)

T2T1

r(B)

r(A)
w(A)

r(A)

w(A)

Serializability of Abstract Schedules

• How can we determine if an abstract schedule is serializable?

• given that we don't know the exact nature of the changes
made to the data

• We'll focus on the following:

• which transaction is the last one to write each data item

• that's the version that will be seen after the schedule

• which version of a data item is read by each transaction

• assume that if a transaction reads a different version,
its subsequent behavior might be different

Conflicts in Schedules

• A conflict is a pair of actions that can't be swapped without
potentially changing the behavior of one or more transactions.

• Examples in the schedule at right:

• w1(A) and r2(A)

• swapping them leads T2 to read a
different value of A

• this may cause T2 to behave differently

• w2(B) and w1(B)

• swapping them means later readers of B
will see a different value of B

• this may cause them to behave differently

• r1(B) and r2(B) do not conflict. why?

T2T1

r(B)

r(A)
w(A)
w(B)

…

r(B)

w(A)

w(B)
…

Which Actions Conflict?

• Actions in different transactions conflict if:
1) they involve the same data item

and 2) at least one of them is a write

• Pairs of actions that do conflict (assume i != j):

• wi(A); rj(A) the value read by Tj may change if we swap them

• ri(A); wj(A) the value read by Ti may change if we swap them

• wi(A); wj(A) subsequent reads may change if we swap them

• two actions from the same txn (their order is fixed by the client)

• Pairs of actions that don’t conflict:

• ri(A); rj(A) – two reads of the same item by different txns

• ri(A); rj(B)

• ri(A); wj(B)

• wi(A); rj(B)

• wi(A); wj(B)

operations on two different items
by different txns

Conflict Serializability

• Rather than ensuring serializability, it’s easier to ensure
a stricter condition known as conflict serializability.

• A schedule is conflict serializable if we can turn it into a
serial schedule by swapping pairs of consecutive actions
that don’t conflict.

r2(A); r1(A); r2(B); w1(A); w2(B); r1(B); w1(B)

r2(A); r2(B); r1(A); w1(A); w2(B); r1(B); w1(B)

r2(A); r2(B); r1(A); w2(B); w1(A); r1(B); w1(B)

r2(A); r2(B); w2(B); r1(A); w1(A); r1(B); w1(B)

• The final schedule is referred to as an equivalent serial schedule.

• serial – all of T2, followed by all of T1

• equivalent – it produces the same results as
the original schedule

Example of a Conflict Serializable Schedule

T2T1

r(A)
r(B)
w(B)

r(A)
w(A)
r(B)
w(B)

T2T1

r(A)

r(B)

w(B)

r(A)

w(A)

r(B)
w(B)

• Because conflicting pairs of actions can't be swapped,
they impose constraints on the order of the txns
in an equivalent serial schedule.

• example: if a schedule includes w1(A) … r2(A),
T1 must come before T2 in any equivalent serial schedule

• To test for conflict serializability:

• determine all such constraints

• make sure they aren’t contradictory

• Example: r2(A); r1(A); r2(B); w1(A); w2(B); r1(B); w1(B)

r2(A) … w1(A) means T2 must come before T1

r2(B) … w1(B) means T2 must come before T1

w2(B) … r1(B) means T2 must come before T1

w2(B) … w1(B) means T2 must come before T1

Thus, this schedule is conflict serializable.

Testing for Conflict Serializability

no contradictions,
so this schedule is
equivalent to the
serial ordering T2;T1

• What about this schedule? r1(B); w1(B); r2(B); r2(A); w2(A); r1(A)

• Which of the following pairs of actions from this schedule conflict?
(choose all that apply)

A. r1(B); r2(B)

B. r1(B); w2(A)

C. w1(B); r2(B)

D. r2(B); r2(A)

E. w2(A); r1(A)

Testing for Conflict Serializability (cont.)

• Tests for conflict serializability can use a precedence graph.
• the vertices/nodes are the transactions
• add an edge for each precedence constraint: T1  T2 means

T1 must come before T2 in an equivalent serial schedule

• Example: r2(A); r3(A); r1(B); w4(A); w2(B); r3(B)

r2(A) … w4(A) means T2  T4
r3(A) … w4(A) means T3  T4
r1(B) … w2(B) means T1  T2
w2(B) … r3(B) means T2  T3

• After the graph is constructed, we test for cycles
(i.e., paths of the form A …  A).
• if the graph is acyclic, the schedule is conflict serializable

• use the constraints to determine an equivalent serial schedule
(in this case: T1;T2;T3;T4)

• if there's a cycle, the schedule is not conflict serializable

Using a Precedence Graph

T4T3

T1 T2

• Determine if the following are conflict serializable:

• r1(A); r3(A); r1(B); w2(A); r4(A); w2(B); w3(C); w4(C); r1(C)

r1(A) … w2(A) means T1  T2
r3(A) … w2(A) means T3  T2
r1(B) … w2(B) means T1  T2
w2(A) … r4(A) means T2  T4
w3(C) … w4(C) means T3  T4
w3(C) … r1(C) means T3  T1
w4(C) … r1(C) means T4  T1

• r1(A); w3(A); w4(A); w2(B); r2(B); r1(B); r4(B)

r1(A) … w3(A) means T1  T3
r1(A) … w4(A) means T1  T4
w3(A) … w4(A) means T3  T4
w2(B) … r1(B) means T2  T1
w2(B) … r4(B) means T2  T4

More Examples

T4T3

T2T1

no cycles, so conflict serializable.
equivalent to T2; T1; T3; T4

T4

T1 T2

T3

cycle: T1  T2  T4  T1
not conflict serializable

• Conflict serializability is a sufficient condition for serializability,
but it’s not a necessary condition.

• all conflict serializable schedules are serializable

• not all serializable schedules are conflict serializable

• Consider the following schedule involving three txns:

• It is not conflict serializable, because:
r2(A) … w1(A) means T2 T1

w1(A) … w2(A) means T1 T2

• It is serializable because its effects are
equivalent to either

T1; T2; T3 or T2; T1; T3 why?

Conflict Serializability vs. Serializability

T3T2T1

r(B)

w(A)

r(A)

r(B)

w(A)

r(A)

w(A)

• While serializability is important,
it isn’t enough for full isolation.

• Consider the serializable schedule at right.

• includes "c" actions that indicate when
the transactions commit

• Imagine that the system crashes:

• after T1’s commit

• before T2’s commit

• During recovery from the crash, the system:

• keeps all of T1’s changes,
because it committed before the crash

• undoes all of T2's changes,
because it didn't commit before the crash

Recoverability

T2T1

r(A)
w(B)

c

r(B)
w(A)

c
CRASH

• This is problematic!

• T1 reads T2's write of B

• it then performs actions that may
be based on the new value of B

• during recovery from the crash,
T2 is rolled back
 B's old value is restored

• it's possible T1 would have behaved
differently if it had read B's old value

• it's too late to roll back T1,
because it has already committed!

• We say that this schedule is unrecoverable.

• if a crash occurs between the two commits,
the process of recovering from the crash
could lead to problematic results

Recoverability (cont.)

T2T1

r(A)
w(B)

c

r(B)
w(A)

c
CRASH

• In a recoverable schedule,
if T1 reads a value written by T2,
T1 must commit after T2 commits.

• This allows us to safely recover
from a crash at any point:

Recoverability (cont.)

T2T1

r(A)
w(B)

c

r(B)
w(A)

c

T2T1

r(A)
w(B)

c

r(B)
w(A)

c

recoverableunrecoverable

T2T1

r(A)
w(B)

c

r(B)
w(A)

c

the writer of the
changed value
is rolled back,
but so is the reader

T2T1

r(A)
w(B)

c

r(B)
w(A)

c

CRASH

the reader is rolled back and
the writer isn't, but that's okay
since the writer didn't base its
actions on what the reader did

T2T1

r(A)
w(B)

c

r(B)
w(A)

c
CRASH

the reader of
the changed value
survives the crash,
but so does the writer

CRASH

Dirty Reads and Cascading Rollbacks

• Dirty data is data written by an uncommitted txn.

• it remains dirty until the txn is either:

• committed: in which case the data is no longer dirty
and it is safe for other txns to read it

• rolled back (either voluntarily or by the DBMS):
in which case the write of the dirty data is undone

• A dirty read is a read of dirty data.

• Dirty reads can lead to cascading rollbacks.

• if the writer of the dirty data is
rolled back, the reader must be, too

• We made our earlier schedule recoverable by switching
the order of the commits:

• Could the revised schedule lead to a cascading rollback?

• To get a casecadeless schedule, don’t allow dirty reads.

Dirty Reads and Cascading Rollbacks (cont.)

T2T1

r(A)
w(B)

c

r(B)
w(B)

c

T2T1

r(A)
w(B)

c

r(B)
w(B)

c

Goals for Schedules

• We want to ensure that schedules of concurrent txns are:

• serializable: equivalent to some serial schedule

• recoverable: ordered so that the system can safely
recover from a crash or undo an aborted transaction

• cascadeless: ensure that rolling back one transaction
does not produce a series of cascading rollbacks

• To achieve these goals, we use some type of
concurrency control mechanism.

• controls the actions of concurrent transactions

• prevents problematic interleavings

Extra Practice

• Is the schedule at right:

• conflict serializable?

• serializable?

• recoverable?

• cascadeless?

T2T1

r(B)

w(B)

r(A)

c

r(B)

w(A)

c

Extra Practice

• What scenarios involving the schedule
at right could produce cascading rollbacks?

T3T2T1

w(C)

r(A)
…

r(C)
w(B)

…

r(B)
w(A)

…

• Draw the precedence graph to find out!

w1(A); r2(B); r2(A); r4(A); w2(B); r4(B); w4(C); r3(D); w3(C)

A. Yes. It is equivalent to the serial schedule T1;T2;T3;T4

B. Yes. It is equivalent to the serial schedule T1;T2;T4;T3

C. No. The graph includes the cycle T1  T4  T2  T1

D. No. The graph includes the cycle T1  T2  T4  T1

Is This Schedule Conflict Serializable?

T4

T1 T2

T3

• Draw the precedence graph to find out!

w1(A); r2(B); r2(A); r4(A); w2(B); r4(B); w4(C); r3(D); w3(C); w1(D)

w1(A) … r3(A) means T1  T3
w1(A) … r2(A) means T1  T2
w1(A) … r4(A) means T1  T4
w2(B) … r4(B) means T2  T4
w4(C) … w3(C) means T4  T3

What If We Add This Write?

T4

T1 T2

T3

