
Extra Practice

• Is the schedule at right:

• conflict serializable?
yes. the only conflicts are:
• r1(B) … w2(B): T1 T2

• w1(A) … r2(A): T1 T2

and thus it is equivalent to T1;T2

• serializable?
yes. all conflict serializable schedules are also serializable

• recoverable?
yes. the only dirty read is T2's read of T1's write of A,
and T2 commits after T1 as required.

• cascadeless?
no, because there's a dirty read.
if T1 is rolled back after T2 reads A, we must roll back T2, too!

T1 T2

r(B)

w(A)

c

r(B)

w(B)

r(A)

c

Extra Practice

• What scenarios involving the schedule
at right could produce cascading rollbacks?

• T1 is rolled back sometime after T3 reads A

• T3 read T1's write of A,
so T3 should be rolled back, too

• T2 is rolled back sometime after T1 reads B

• T1 read T2's write of B,
so T1 should be rolled back, too

• T3 is rolled back sometime after T2 reads C

• T2 read T3's write of C,
so T2 should be rolled back, too

T1 T2 T3

r(B)
w(A)

…

r(C)
w(B)

…

w(C)

r(A)
…

• Draw the precedence graph to find out!

w1(A); r2(B); r2(A); r4(A); w2(B); r4(B); w4(C); r3(D); w3(C)

w1(A) … r2(A) means T1 T2
w1(A) … r4(A) means T1 T4
w2(B) … r4(B) means T2 T4
w4(C)…w3(C) means T4 T3

A. Yes. It is equivalent to the serial schedule T1;T2;T3;T4

B. Yes. It is equivalent to the serial schedule T1;T2;T4;T3

C. No. The graph includes the cycle T1 T4 T2 T1

D. No. The graph includes the cycle T1 T2 T4 T1

Is This Schedule Conflict Serializable?

T4

T1 T2

T3

no cycles, so conflict serializable.

• Draw the precedence graph to find out!

w1(A); r2(B); r2(A); r4(A); w2(B); r4(B); w4(C); r3(D); w3(C); w1(D)

w1(A) … r2(A) means T1 T2
w1(A) … r4(A) means T1 T4
w2(B) … r4(B) means T2 T4
w4(C)…w3(C) means T4 T3
r3(D) … w1(D) means T3 T1

What If We Add This Write?

T4

T1 T2

T3

cycles:
T1 T2 T4 T3 T1

T1 T4 T3 T1
not conflict serializable

