Is the schedule at right: T, | T,
» conflict serializable? r(B)
yes. the only conflicts are: «(B)
* 1ry(B) ... wy(B): T1 > T2 w(B)
e W,(A) ... (A): T1 S T2 "AT A
and thus it is equivalent to T1;T2 c
C
* serializable?

Extra Practice

yes. all conflict serializable schedules are also serializable

recoverable?
yes. the only dirty read is T2's read of T1's write of A,
and T2 commits after T1 as required.

cascadeless?
no, because there's a dirty read.
if T1 is rolled back after T2 reads A, we must roll back T2, too!

« What scenarios involving the schedule T, | T, [T
at right could produce cascading rollbacks? ) w(C)
« T1is rolled back sometime after T3 reads A 5 w(B)
- T3 read T1's write of A, )
so T3 should be rolled back, too r(A)

¢ T2 is rolled back sometime after T1 reads B

Extra Practice

* T1 read T2's write of B,
so T1 should be rolled back, too

¢ T3 is rolled back sometime after T2 reads C

* T2 read T3's write of C,
so T2 should be rolled back, too




Is This Schedule Conflict Serializable?
» Draw the precedence graph to find out!
W4(A); ro(B); ra(A); r4(A); Wo(B); 14(B); wu(C); r3(D); wa(C)

W,(A) ... r,(A) means T1 > T2 @
W4(A) ... ry(A) means T1 > T4

W,(B) ... ry(B) means T2 > T4 ‘
Wy(C)...w3(C) means T4 > T3 @ @

no cycles, so conflict serializable.

Yes. It is equivalent to the serial schedule T1;T2;T3;T4
Yes. It is equivalent to the serial schedule T1;T2;T4;T3
No. The graph includes the cycle T1 > T4 > T2 > T1
No. The graph includes the cycle T1 > T2 > T4 > T1

oo w >

What If We Add This Write?

» Draw the precedence graph to find out!

W1(A); 12(B); ro(A); ra(A); Wa(B); 14(B); Wa(C); r3(D); w3(C); wq(D)

W,(A) ... r,(A) means T1 > T2 @ @
W4(A) ... ry(A) means T1 > T4
Wy(B) ... ry(B) means T2 > T4
W,(C)...w5(C) means T4 > T3 @ @
ry(D) ... wy(D) means T3 2> T1

cycles:

T1 272 2>T4>T73>T1
T1 2T4>T3>T1
not conflict serializable




