
Extra Practice

• Is the schedule at right:

• conflict serializable?
yes. the only conflicts are:
• r1(B) … w2(B): T1  T2

• w1(A) … r2(A): T1  T2

and thus it is equivalent to T1;T2

• serializable?
yes. all conflict serializable schedules are also serializable

• recoverable?
yes. the only dirty read is T2's read of T1's write of A,
and T2 commits after T1 as required.

• cascadeless?
no, because there's a dirty read.
if T1 is rolled back after T2 reads A, we must roll back T2, too!

T1 T2

r(B)

w(A)

c

r(B)

w(B)

r(A)

c

Extra Practice

• What scenarios involving the schedule
at right could produce cascading rollbacks?

• T1 is rolled back sometime after T3 reads A

• T3 read T1's write of A,
so T3 should be rolled back, too

• T2 is rolled back sometime after T1 reads B

• T1 read T2's write of B,
so T1 should be rolled back, too

• T3 is rolled back sometime after T2 reads C

• T2 read T3's write of C,
so T2 should be rolled back, too

T1 T2 T3

r(B)
w(A)

…

r(C)
w(B)

…

w(C)

r(A)
…

• Draw the precedence graph to find out!

w1(A); r2(B); r2(A); r4(A); w2(B); r4(B); w4(C); r3(D); w3(C)

w1(A) … r2(A) means T1  T2
w1(A) … r4(A) means T1  T4
w2(B) … r4(B) means T2  T4
w4(C)…w3(C) means T4  T3

A. Yes. It is equivalent to the serial schedule T1;T2;T3;T4

B. Yes. It is equivalent to the serial schedule T1;T2;T4;T3

C. No. The graph includes the cycle T1  T4  T2  T1

D. No. The graph includes the cycle T1  T2  T4  T1

Is This Schedule Conflict Serializable?

T4

T1 T2

T3

no cycles, so conflict serializable.

• Draw the precedence graph to find out!

w1(A); r2(B); r2(A); r4(A); w2(B); r4(B); w4(C); r3(D); w3(C); w1(D)

w1(A) … r2(A) means T1  T2
w1(A) … r4(A) means T1  T4
w2(B) … r4(B) means T2  T4
w4(C)…w3(C) means T4  T3
r3(D) … w1(D) means T3  T1

What If We Add This Write?

T4

T1 T2

T3

cycles:
T1  T2  T4 T3 T1

T1  T4  T3  T1
not conflict serializable

