
Implementing a
Logical-to-Physical Mapping

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

Recall: Logical-to-Physical Mapping

• Recall our earlier diagram of a DBMS,
which divides it into two layers:

• the logical layer

• the storage layer or storage engine

• The logical layer implements a mapping from the logical schema
of a collection of data to its physical representation.

• example: for the relational model, it maps:

attributes fields
tuples to records
relations files and index structures
selects, projects, etc. scans, searches, field extractions

logical layer

storage engine

OS FS

disks

Your Task

• On the homework, you will implement portions of
the logical-to-physical mapping for a simple relational DBMS.

• We’re giving you:

• a SQL parser

• a storage engine: Berkeley DB

• portions of the code needed for the mapping, and a
framework for the code that you will write

• In a sense, we’ve divided the
logical layer into two layers:

• a SQL parser
• everything else – the "middle layer"

• you’ll implement parts of this

storage engine

OS FS

disks

"middle layer"

SQL parser

The Parser

• Takes a string containing a SQL statement

• Creates an instance of a subclass of the class SQLStatement:

• SQLStatement is an abstract class.

• contains fields and methods inherited by the subclasses

• includes an abstract execute() method

• just the method header, not the body

• Each subclass implements its own version of execute()

• you'll do this for some of the subclasses

SQLStatement

CreateStatement InsertStatementDropStatement ...

SQLStatement Class

• Looks something like this:

public abstract class SQLStatement {
private ArrayList<Table> tables;
private ArrayList<Column> columns;
private ArrayList<Object> columnVals;
private ConditionalExpression where;
private ArrayList<Column> whereColumns;

public abstract void execute();
…

Other Aspects of the Code Framework

• DBMS: the "main" class

• methods to initialize, shutdown, or abort the system

• methods to maintain and access the state of the system

• to allow access to the DBMS methods from other classes,
we make its methods static

• this means the class name can be used to invoke them

• Classes that represent relational constructs, including:
• Table

• Column

• InsertRow: a row that is being prepared for insertion in a table

• Catalog: a class that maintains the per-table metadata

• here again, the methods are static

The Storage Engine: Berkeley DB (BDB)

• An embedded database library for managing key/value pairs

• fast: runs in the application’s address space, no IPC

• reliable: transactions, recovery, etc.

• One example of a type of noSQL database known as a
key-value store.

• We're using Berkeley DB Java Edition (JE)

• Note: We're not using the Berkeley DB SQL interface.

• we're writing our own!

Berkeley DB Terminology

• A database in BDB is a collection of key/value pairs that are
stored in the same index structure.

• BDB docs say "key/data pairs" instead of "key/value pairs"

• BDB Java Edition always uses a B+tree.

• other versions of BDB provide other index-structure options

• A database is operated on by making method calls using a
database handle – an instance of the Database class.

• We will use one BDB database for each table/relation.

Berkeley DB Terminology (cont.)

• An environment in BDB encapsulates:

• a set of one or more related BDB databases

• the state associated with the BDB subsystems
for those databases

• RDBMS: related tables are grouped together into a database.
BDB: related databases are grouped together into an environment.

• Files for a given environment are put in the same folder.

• known as the environment’s home directory

Opening/Creating a BDB Database

• We give you the code for this in the DBMS framework:

• CreateStatement.execute() creates a database
for a new table

• Table.open() opens the database for an existing table

• Use the table's primary key for the keys in the key/value pairs.

• if one wasn't specified when the table was created,
we use the first column

• can assume no multi-attribute primary keys

Key/Value Pairs

• When manipulating keys and values within a program,
we represent them using a DatabaseEntry object.

• For a given key/value pair, we need two DatabaseEntrys.

• one for the key

• one for the value

• Each DatabaseEntry encapsulates:

• a reference to the collection of bytes (the data)

• the size of the data (i.e., its length in bytes)

• some additional fields

• methods: getData, getSize, …

• consult the Berkeley DB API for info on the methods!

Byte Arrays

• In Berkeley DB, the on-disk keys and values are byte arrays –
i.e., arbitrary collections of bytes.

• Berkeley DB does not attempt to interpret them.

• Your code will need to impose structure on these byte arrays.

Marshalling the Data

• When inserting a row, we need to turn a collection of fields
into a key/value pair.

• example:

('9876543', 'psych', 125)

• In BDB, the key and value are each:

• represented by a DatabaseEntry object

• based on a byte array that we need to create

• This process is referred to as marshalling the data.

• The reverse process is known as unmarshalling.

9876543

key

value

125pysch17138-2

The Required Record Format

• Here's what option 3 did:

('1234567', 'comp sci', 200)

• We'll do something a bit different:

('1234567', 'comp sci', 200)

• the primary-key value becomes the key in the key/value pair

• the value is the other fields with a header of offsets

• we use a special offset for the primary-key in the header
(note: it won't always be the first column!)

• what should the remaining offsets be in this case?
(assume 2-byte offsets and 4-byte integer values)

200comp sci???-2

1234567

key

value

200comp sci12345672723158

Classes for Manipulating Byte Arrays

• RowOutput: an output stream that writes into a byte array

• inherits from Java’s DataOutputStream:
• writeBytes(String val)

• writeShort(int val) // can use for offsets!

• writeInt(int val)

• writeDouble(double val)

• methods for obtaining the results of the writes:
• getBufferBytes()

• getBufferLength()

• includes a toString() method that shows the
current contents of the byte array

Classes for Manipulating Byte Arrays (cont.)

• RowInput: an input stream that reads from a byte array

• methods that take an offset from the start of the byte array
• readBytesAtOffset(int offset, int length)

• readIntAtOffset(int offset)

• etc.

• methods that read from the current offset
(i.e., from where the last read left off)

• readNextBytes(int length)

• readNextInt()

• etc.

• includes a toString() method that shows the
contents of the byte array and the current offset

Example of Marshalling

('1234567', 'comp sci', 200)

• Marshalling this row could be done as follows:

RowOutput keyBuffer = new RowOutput();
keyBuffer.writeBytes("1234567");

RowOutput valuebuffer = new RowOutput();
valueBuffer.writeShort(-2);
valueBuffer.writeShort(8);
valueBuffer.writeShort(16);
valueBuffer.writeShort(20);
valueBuffer.writeBytes("comp sci");
valueBuffer.writeInt(200);

200comp sci20168-2

1234567

key

value

Inserting Data into a BDB Database

• Create the DatabaseEntry objects for the key and value:
// see previous slide for marshalling code
byte[] bytes = keyBuffer.getBufferBytes();
int numBytes = keyBuffer.getBufferLength();
DatabaseEntry key = new DatabaseEntry(bytes, 0, numBytes);

bytes = valueBuffer.getBufferBytes();
numBytes = valueBuffer.getBufferLength();
DatabaseEntry value = new DatabaseEntry(bytes, 0, numBytes);

• Use the Database putNoOverwrite method:
Database db; // assume it has been opened
OperationStatus ret = db.putNoOverwrite(null, key, value);

• null because we are not using transactions

• if there is an existing key/value pair with the specified key:

• the insertion fails

• the method returns OperationStatus.KEYEXIST

• if the insertion succeeds, returns OperationStatus.SUCCESS

Cursors in Berkeley DB

• In general, a cursor is a construct used to iterate over records
in a database file.

• similar to an iterator for a collection class

• In BDB, cursors iterate over key/value pairs in a BDB database.

• based on method calls using an instance of the Cursor class

• The key/value pairs are returned in "empty" DatabaseEntrys
that are passed as parameters to the cursor's getNext method:

DatabaseEntry key = new DatabaseEntry();
DatabaseEntry value = new DatabaseEntry();
OperationStatus ret = curs.getNext(key, value, null);

Table Iterators

• In PS 2, a cursor is used to implement a TableIterator class.

• It can be used to iterate over the tuples in either:

• an entire single table:

SELECT *
FROM Movie;

• or the relation that is produced by applying a
selection operator to the tuples of single table:

SELECT *
FROM Movie
WHERE rating = 'PG-13' and year > 2010;

• A TableIterator has:

• fields for the current key/value pair accessed by the cursor

• methods for advancing/resetting the cursor

• a method you'll implement for getting a column's value

Unmarshalling a Single Field's Value

• You will write a TableIterator method that unmarshalls the
value of a single column from the current key/value pair.

public Object getColumnVal(int colIndex)

• First, you'll need to create the necessary RowInput objects:

RowInput keyIn = new RowInput(this.key.getData());
RowInput valueIn = new RowInput(this.value.getData());

• Then you'll use RowInput methods to access the necessary
offset(s) and value.

• You should not unmarshall the entire record – only the portions
that are needed to get the value of the specified column.

• Thus, you should mostly use the "at offset" versions of the
RowInput methods.

• readBytesAtOffset, readIntAtOffset, etc.

Examples of Unmarshalling: Assumptions

• We have a simplified version of the Movie table from PS 1:

Movie(id CHAR(7), name VARCHAR(64), runtime INT,
rating VARCHAR(5), earnings_rank INT)

• We didn't specify a primary key when we created the table.

• thus, id is the primary key – and the key in the key/value pair

• the rest of the row is in the value portion of the key/value pair

• We're using 2-byte offsets.

• -2 indicates the primary key

• -1 indicates a NULL value

• The cursor/iterator is currently positioned on this key/value pair:

45-144403124 R111Moonlight26-1252112-2

0 2 4 6 8 1210 21 25

4975722key value

Example 1

Movie(id CHAR(7), name VARCHAR(64), runtime INT,
rating VARCHAR(5), earnings_rank INT)

• To retrieve the movie's name (field1 – the second field):

• determine that offset1 is 1*2 = 2 bytes from the start

• perform a read at an offset of 2 to obtain offset1 12

• because name is a VARCHAR, read offset2 21
and compute this name's length = 21 – 12 = 9

• read 9 bytes at an offset of 12 bytes  'Moonlight'

45-144403124 R111Moonlight26-1252112-2

0 2 4 1210 21 25

value

6 8

Example 2

Movie(id CHAR(7), name VARCHAR(64), runtime INT,
rating VARCHAR(5), earnings_rank INT)

• To retrieve the earnings_rank (field4)

• determine that offset4 is 4*2 = 8 bytes from the start

• perform a read at an offset of 8 to obtain offset4 -1

• conclude that the value is NULL

45-144403124 R111Moonlight26-1252112-2

0 2 4 1210 21 25

value

6 8

Example 3

Movie(id CHAR(7), name VARCHAR(64), runtime INT,
rating VARCHAR(5), earnings_rank INT)

• To retrieve the rating (field3):

• determine that offset3 is 3*2 = 6 bytes from the start

• perform a read at an offset of 6 to obtain offset3 25

• because rating is a VARCHAR:

• read offset4 -1, so we need to keep going!

• read offset5 26

• compute this rating's length = 26 – 25 = 1

• read 1 byte at an offset of 25  'R'

45-144403124 R111Moonlight26-1252112-2

0 2 4 1210 21 25

value

6 8

