Computer Science E-66

Introduction Database Design and ER Models The Relational Model

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

The Conventional Approach

- Use a DBMS that employs the *relational model*
 - use the SQL query language
- Examples: IBM DB2, Oracle, Microsoft SQL Server, MySQL
- Typically follow a client-server model
 - · the database server manages the data
 - · applications act as clients
- · Extremely powerful
 - · SQL allows for more or less arbitrary queries
 - support transactions and the associated guarantees

Limitations of the Conventional Approach Can be overkill for applications that don't need all the features Can be hard / expensive to setup / maintain / tune May not provide the necessary functionality Footprint may be too large example: can't put a conventional RDBMS on a small embedded system May be unnecessarily slow for some tasks overhead of IPC, query processing, etc. Does not scale well to large clusters

Example Problem II: Web Services Services provided or hosted by Google, Amazon, etc. Can involve huge amounts of data / traffic Scalability is crucial load can increase rapidly and unpredictably use large clusters of commodity machines Conventional relational DBMSs don't scale well in this way. Solution: some flavor of noSQL

Course Overview

- data models/representations (logical layer), including:
 - entity-relationship (ER): used in database design
 - relational (including SQL)
 - semistructured: XML, JSON
 - noSQL variants
- implementation issues (storage layer), including:
 - storage and index structures
 - · transactions
 - concurrency control
 - · logging and recovery
 - distributed databases and replication

Course Requirements

- · Lectures and weekly sections
 - sections: optional but recommended; start this week
 - also available by streaming and recorded video
- Five problem sets
 - · several will involve programming in Java
 - all will include written questions
 - · grad-credit students will complete extra problems
 - must be your own work
 - · see syllabus or website for the collaboration policy
- Midterm exam
- Final exam

Prerequisites

- A good working knowledge of Java
- A course at the level of CSCI E-22
- Experience with fairly large software systems is helpful.

Course Materials

- Lecture notes will be the primary resource.
- Optional textbook: *Database Systems: The Complete Book* (2nd edition) by Garcia-Molina et al. (Prentice Hall)
- Other options:
 - Database Management Systems by Ramakrishnan and Gehrke (McGraw-Hill)
 - *Database System Concepts* by Silberschatz et al. (McGraw-Hill)

Additional Administrivia

- Instructor: Cody Doucette
- TA: Eli Saracino
- Office hours and contact info. are available on the Web: http://cscie66.sites.fas.harvard.edu
- For questions on content, homework, etc.: Ed Discussion

Database Design

- In database design, we determine:
 - which pieces of data to include
 - · how they are related
 - · how they should be grouped/decomposed
- End result: a logical schema for the database
 - · describes the contents and structure of the database

The Relational Model: Basic Concepts

- A database consists of a collection of tables.
- Example of a table:

id	name	address	class	dob
12345678	Jill Jones	Canaday C-54	2011	3/10/85
25252525	Alan Turing	Lowell House F-51	2008	2/7/88
33566891	Audrey Chu	Pfoho, Moors 212	2009	10/2/86
45678900	Jose Delgado	Eliot E-21	2009	7/13/88
66666666	Count Dracula	The Dungeon	2007	11/1431

- Each row in a table holds data that describes either:
 - an entity
 - a relationship between two or more entities
- Each *column* in a table represents one attribute of an entity.
 - each column has a *domain* of possible values

• identical rows are known as duplicates

 Null Values By default, the domains of most columns include a special value called <i>null</i>. 								
 Null values can be used to indicate that: the value of an attribute is unknown for a particular tuple the attribute doesn't apply to a particular tuple. example: Student 								
id	name		major					
12345678	Jill Jones		computer science					
25252525	Alan Turing		mathematics					
33333333	Dan Dabbler		null					

Relational Schema

- The schema of a relation consists of:
 - the name of the relation
 - the names of its attributes
 - the attributes' domains (although we'll ignore them for now)
- Example: *Student(id, name, address, email, phone)*
- The schema of a relational database consists of the schema of all of the relations in the database.

Special Case: Many-to-One Relationship Sets (cont.)

 If one or more entities don't participate in the relationship, there will be null attributes for the fields that capture the relationship:

Course					
name		room_name			
cscie50b		Sci Ctr B			
cscie119		Sever 213			
cscie160		Sci Ctr A			
cscie268		Sci Ctr A			
cscie160		NULL			

• If a large number of entities don't participate in the relationship, it may be better to use a separate relation.

