
Computer Science E-66

Introduction
Database Design and ER Models

The Relational Model

Harvard Extension School

Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

Databases and DBMSs

• A database is a collection of related data.

• refers to the data itself, not the program

• Managed by some type of database management system
(DBMS)

The Conventional Approach

• Use a DBMS that employs the relational model

• use the SQL query language

• Examples: IBM DB2, Oracle, Microsoft SQL Server, MySQL

• Typically follow a client-server model

• the database server manages the data

• applications act as clients

• Extremely powerful

• SQL allows for more or less arbitrary queries

• support transactions and the associated guarantees

Transactions

• A transaction is a sequence of operations that is treated as
a single logical operation.

• Example: a balance transfer

• Other examples:

• making a flight reservation
select flight, reserve seat, make payment

• making an online purchase

• Transactions are all-or-nothing: all of a transaction’s changes
take effect or none of them do.

read balance1
write(balance1 - 500)
read balance2
write(balance2 + 500)

transaction T1

Why Do We Need Transactions?

• To prevent problems stemming from system failures.

• example:

• what should happen?

read balance1
write(balance1 - 500)
CRASH
read balance2
write(balance2 + 500)

transaction

Why Do We Need Transactions? (cont.)

• To ensure that operations performed by different users
don’t overlap in problematic ways.

• example: what’s wrong with the following?

• how could we prevent this?

read balance1
write(balance1 – 500)

read balance2
write(balance2 + 500)

user 1's transaction

read balance1
read balance2
if (balance1 + balance2 < min)

write(balance1 – fee)

user 2's transaction

Limitations of the Conventional Approach

• Can be overkill for applications that don’t need all the features

• Can be hard / expensive to setup / maintain / tune

• May not provide the necessary functionality

• Footprint may be too large
• example: can’t put a conventional RDBMS on a small

embedded system

• May be unnecessarily slow for some tasks
• overhead of IPC, query processing, etc.

• Does not scale well to large clusters

Example Problem I: User Accounts

• Database of user information for email,
groups,etc.

• Used to authenticate users
and manage their preferences

• Needs to be extremely fast and robust

• Don’t need SQL. Why?

• Possible solution: a key-value store

• key = user id

• value = password and other user information

• less overhead and easier to manage

• still very powerful: transactions, recovery, replication, etc.

Example Problem II: Web Services

• Services provided or hosted by Google, Amazon, etc.

• Can involve huge amounts of data / traffic

• Scalability is crucial

• load can increase rapidly and unpredictably

• use large clusters of commodity machines

• Conventional relational DBMSs don't scale well in this way.

• Solution: some flavor of noSQL

What Other Options Are There?

• View a DBMS as being composed of two layers.

• At the bottom is the storage layer or
storage engine.

• stores and manages the data

• Above that is the logical layer.

• provides an abstract representation
of the data

• based on some data model

• includes some query language, tool, or API
for accessing and modifying the data

• To get other approaches, choose different options for the layers.

logical layer

storage engine

OS FS

disks

Course Overview

• data models/representations (logical layer), including:

• entity-relationship (ER): used in database design

• relational (including SQL)

• semistructured: XML, JSON

• noSQL variants

• implementation issues (storage layer), including:

• storage and index structures

• transactions

• concurrency control

• logging and recovery

• distributed databases and replication

Course Requirements

• Lectures and weekly sections

• sections: optional but recommended; start this week

• also available by streaming and recorded video

• Five problem sets

• several will involve programming in Java

• all will include written questions

• grad-credit students will complete extra problems

• must be your own work
• see syllabus or website for the collaboration policy

• Midterm exam

• Final exam

Prerequisites

• A good working knowledge of Java

• A course at the level of CSCI E-22

• Experience with fairly large software systems is helpful.

Course Materials

• Lecture notes will be the primary resource.

• Optional textbook: Database Systems: The Complete Book
(2nd edition) by Garcia-Molina et al. (Prentice Hall)

• Other options:

• Database Management Systems by Ramakrishnan and
Gehrke (McGraw-Hill)

• Database System Concepts by Silberschatz et al.
(McGraw-Hill)

Additional Administrivia

• Instructor: Cody Doucette

• TA: Eli Saracino

• Office hours and contact info. are available on the Web:

http://cscie66.sites.fas.harvard.edu

• For questions on content, homework, etc.: Ed Discussion

Database Design

• In database design, we determine:

• which pieces of data to include

• how they are related

• how they should be grouped/decomposed

• End result: a logical schema for the database

• describes the contents and structure of the database

ER Models

• An entity-relationship (ER) model is a tool for database design.

• graphical

• implementation-neutral

• ER models specify:

• the relevant entities (“things”) in a given domain

• the relationships between them

Sample Domain: A University

• Want to store data about:

• employees

• students

• courses

• departments

• How many tables do you think we’ll need?

• can be hard to tell before doing the design

• in particular, hard to determine which tables are needed
to encode relationships between data items

Entities: the “Things”

• Represented using rectangles.

• Examples:

• Strictly speaking, each rectangle represents an entity set,
which is a collection of individual entities.

CSCI E-119 Jill Jones Drew Faust
English 101 Alan Turing Dave Sullivan
CSCI E-268 Jose Delgado Margo Seltzer
… … …

Course Student Employee

Course Student Employee

Attributes

• Associated with entities are attributes that describe them.
• represented as ovals connected to the entity by a line
• double oval = attribute that can have multiple values

start time end timeroomname

exam dates
Course

Keys

• A key is an attribute or collection of attributes that can be used
to uniquely identify each entity in an entity set.

• An entity set may have more than one possible key.
• example:

• possible keys include:

address emailname

Person

id age

Candidate Key

• A candidate key is a minimal collection of attributes that is a key.

• minimal = no unnecessary attributes are included

• not the same as minimum

• Example: assume (name, address, age) is a key for Person

• it is a minimal key because we lose uniqueness
if we remove any of the three attributes:

• (name, address) may not be unique

– e.g., a father and son with the same name and address

• (name, age) may not be unique

• (address, age) may not be unique

• Example: (id, email) is a key for Person

• it is not minimal, because just one of these attributes
is sufficient for uniqueness

• therefore, it is not a candidate key

Key vs. Candidate Key

• Consider an entity set for books:

key? candidate key?

isbn

author_id, title

author_id, isbn

author_id

author_id titleisbn

Book
assume that: each book has a unique isbn

an author doesn't write two books
with the same title

Primary Key

• We typically choose one of the candidate keys as the primary key.

• In an ER diagram, we underline the primary key attribute(s).

start time end timeroomname

exam dates
Course

Relationships Between Entities

• Relationships between entities are represented using diamonds
that are connected to the relevant entity sets.

• For example: students are enrolled in courses

• Another example: courses meet in rooms

Person CourseEnrolled

Course RoomMeets In

Relationships Between Entities (cont.)

• Strictly speaking, each diamond represents a relationship set,
which is a collection of relationships between individual entities.

• In a given set of relationships:

• an individual entity may appear 0, 1, or multiple times

• a given combination of entities may appear at most once
• example: the combination (CS 105, CAS 315) may appear

at most once

CS 111

CS 460

CS 510

CS 105 CAS 315

MCS 205

CAS 314

Course RoomMeets In

Attributes of Relationships

• A relationship set can also have attributes.

• they specify info. associated with the relationships in the set

• Example:

Person Course

credit status

Enrolled

Key of a Relationship Set

• A key of a relationship set can be formed by taking the
union of the primary keys of its participating entities.

• example: (Person.id, Course.name) is a key of enrolled

• The resulting key may or may not be a primary key.
Why?

credit status

Enrolled

id

Person

name

course

Degree of a Relationship Set

• Enrolled is a binary relationship set: it connects two entity sets.

• degree = 2

• It's also possible to have higher-degree relationship sets.

• A ternary relationship set connects three entity sets.

• degree = 3

Person CourseEnrolled

Person Course

Study
Group

Studies
In

Relationships with Role Indicators

• It’s possible for a relationship set to involve more than one
entity from the same entity set.

• For example: every student has a faculty advisor, where
students and faculty members are both members of the
Person entity set.

• In such cases, we use role indicators (labels on the lines)
to distinguish the roles of the entities in the relationship.

Person Advises
advisor

advisee

Cardinality (or Key) Constraints

• A cardinality constraint (or key constraint) limits the number
of times that a given entity can appear in a relationship set.

• Example: each course meets in at most one (i.e., 0 or 1) room

• A key constraint specifies a functional mapping from one
entity set to another.
• each course is mapped to at most one room (course  room)

• as a result, each course appears in at most one relationship
in the meets in relationship set

• The arrow in the ER diagram has same direction as the mapping.

• note: the R&G book uses a different convention for the arrows

Course RoomMeets In

Cardinality Constraints (cont.)

• The presence or absence of cardinality constraints divides
relationships into three types:

• many-to-one

• one-to-one

• many-to-many

• We'll now look at each type of relationship.

Many-to-One Relationships

• Meets In is an example of a many-to-one relationship.

• We need to specify a direction for this type of relationship.

• example: Meets In is many-to-one from Course to Room

• In general, in a many-to-one relationship from A to B:

• an entity in A can be related to at most one entity in B

• an entity in B can be related to an arbitrary number of
entities in A (0 or more)

A BR

Course RoomMeets In

Picturing a Many-to-One Relationship

• Each course participates in at most one relationship,
because it can meet in at most one room.

• Because the constraint only specifies a maximum (at most one),
it's possible for a course to not meet in any room (e.g., CS 610).

CS 111

CS 460

CS 510

CS 105 CAS 315

MCS 205

CAS 314

CS 610

Course RoomMeets In

• The diagram above says that:

• a given book can be borrowed by at most one person

• a given person can borrow an arbitrary number of books

• Borrows is a many-to-one relationship from Book to Person.

• We could also say that Borrows is a one-to-many relationship
from Person to Book.

• one-to-many is the same thing as many-to-one,
but the direction is reversed

Another Example of a Many-to-One Relationship

Person BookBorrows

One-to-One Relationships

• In a one-to-one relationship involving A and B: [not from A to B]

• an entity in A can be related to at most one entity in B

• an entity in B can be related to at most one entity in A

• We indicate a one-to-one relationship by putting an arrow
on both sides of the relationship:

• Example: each department has at most one chairperson, and
each person chairs at most one department.

Person DepartmentChairs

A BR

Many-to-Many Relationships

• In a many-to-many relationship involving A and B:

• an entity in A can be related to an arbitrary number
of entities in B (0 or more)

• an entity in B can be related to an arbitrary number
of entities in A (0 or more)

• If a relationship has no cardinality constraints specified
(i.e., if there are no arrows on the connecting lines),
it is assumed to be many-to-many.

A BR

How can we indicate that each student
has at most one major?

• Majors In is what type of relationship in this case?

Person DepartmentMajors In

What if each student can have
more than one major?

• Majors In is what type of relationship in this case?

Person DepartmentMajors In

Another Example

• How can we indicate that each student has at most one
advisor?

• Advises is what type of relationship?

Person Advises
advisor

advisee

Cardinality Constraints and
Ternary Relationship Sets

• The arrow into "study group" encodes the following constraint:
"a person studies in at most one study group for a given course."

• In other words, a given (person, course) combination is
mapped to at most one study group.

• a given person or course can itself appear in multiple
studies-in relationships

• For relationship sets of degree >= 3, we use at most one arrow,
since otherwise the meaning can be ambiguous.

person course

study
group

studies
in

Participation Constraints

• Cardinality constraints allow us to specify that each entity
will appear at most once in a given relationship set.

• Participation constraints allow us to specify that each entity
will appear at least once (i.e., 1 or more time).

• indicate using a thick line (or double line)

• Example: each department must have at least one chairperson.

• We say Department has total participation in Chairs.

• by contrast, Person has partial participation

Person DepartmentChairs
omitting
the cardinality
constraints
for now

Participation Constraints (cont.)

• We can combine cardinality and participation constraints.

• a person chairs at most one department

• specified by which arrow?

• a department has ___________ person as a chair

Person DepartmentChairs

The Relational Model: A Brief History

• Defined in a landmark 1970 paper
by Edgar 'Ted' Codd.

• Earlier data models were closely tied
to the physical representation of the data.

• The relational model was revolutionary
because it provided data independence –
separating the logical model of the data
from its underlying physical representation.

• Allows users to access the data without understanding
how it is stored on disk.

The Relational Model: Basic Concepts

• A database consists of a collection of tables.

• Example of a table:

• Each row in a table holds data that describes either:

• an entity

• a relationship between two or more entities

• Each column in a table represents one attribute of an entity.

• each column has a domain of possible values

dobclassaddressnameid
3/10/852011Canaday C-54Jill Jones12345678

2/7/882008Lowell House F-51Alan Turing25252525

10/2/862009Pfoho, Moors 212 Audrey Chu33566891

7/13/882009Eliot E-21Jose Delgado45678900

11/14312007The DungeonCount Dracula66666666

...............

Relational Model: Terminology

• Two sets of terminology:

table = relation
row = tuple
column = attribute

• We'll use both sets of terms.

Requirements of a Relation

• Each column must have a unique name.

• The values in a column must be of the same type
(i.e., must come from the same domain).

• integers, real numbers, dates, strings, etc.

• Each cell must contain a single value.

• example: we can't do something like this:

• No two rows can be identical.

• identical rows are known as duplicates

phones…nameid
123-456-5678, 234-666-7890...Jill Jones12345678

777-777-7777, 111-111-1111...Alan Turing25252525

............

Null Values

• By default, the domains of most columns include a special value
called null.

• Null values can be used to indicate that:

• the value of an attribute is unknown for a particular tuple

• the attribute doesn't apply to a particular tuple. example:

major…nameid
computer science...Jill Jones12345678

mathematics...Alan Turing25252525

null...Dan Dabbler33333333

Student

Relational Schema

• The schema of a relation consists of:
• the name of the relation
• the names of its attributes
• the attributes’ domains (although we’ll ignore them for now)

• Example:

Student(id, name, address, email, phone)

• The schema of a relational database consists of the schema
of all of the relations in the database.

ER Diagram to Relational Database Schema

• Basic process:

• entity set  a relation with the same attributes

• relationship set  a relation whose attributes are:
• the primary keys of the connected entity sets
• the attributes of the relationship set

• Example of converting a relationship set:

• in addition, we would create a relation for each entity set

Enrolled(id, name, credit_status)

addressname end timestart time

credit status

Enrolled

id

Student

name

Course

Renaming Attributes

• When converting a relationship set to a relation, there may be
multiple attributes with the same name.

• need to rename them

• Example:

• We may also choose to rename attributes for the sake of clarity.

MeetsIn(course_name, room_name)

MeetsIn(name, name)

end timestart timename

Meets InCourse

capacityname

Room

Special Case: Many-to-One Relationship Sets

• Ordinarily, a binary relationship set will produce three relations:

• one for the relationship set

• one for each of the connected entity sets

• Example:

MeetsIn(course_name, room_name)
Course(name, start_time, end_time)
Room(name, capacity)

end timestart timename

Meets InCourse

capacityname

Room

Special Case: Many-to-One Relationship Sets (cont.)

• However, if a relationship set is many-to-one, we often:

• eliminate the relation for the relationship set

• capture the relationship set in the relation used for the
entity set on the many side of the relationship

MeetsIn(course_name, room_name)
Course(name, start_time, end_time, room_name)
Room(name, capacity)

end timestart timename

Meets InCourse

capacityname

Room

Special Case: Many-to-One Relationship Sets (cont.)

• Advantages of this approach:
• makes some types of queries more efficient to execute
• uses less space

…name

cscie50b

cscie119

cscie160

cscie268

room_namecourse_name

Sci Ctr Bcscie50b

Sever 213cscie119

Sci Ctr Acscie160

Sci Ctr Acscie268

Course MeetsIn

room_name…name

Sci Ctr Bcscie50b

Sever 213cscie119

Sci Ctr Acscie160

Sci Ctr Acscie268

Course

Special Case: Many-to-One Relationship Sets (cont.)

• If one or more entities don't participate in the relationship,
there will be null attributes for the fields that capture the
relationship:

• If a large number of entities don't participate in the relationship,
it may be better to use a separate relation.

room_name…name

Sci Ctr Bcscie50b

Sever 213cscie119

Sci Ctr Acscie160

Sci Ctr Acscie268

NULLcscie160

Course

Special Case: One-to-One Relationship Sets

• Here again, we're able to have only two relations –
one for each of the entity sets.

• In this case, we can capture the relationship set in the relation
used for either of the entity sets.

• Example:

• which of these would probably make more sense?

nameid officename

Person(id, name, chaired_dept)
Department(name, office)

Person DepartmentChairs

Person(name, id)
Department(name, office, chair_id)OR

• For many-to-many relationship sets, we need to use
a separate relation for the relationship set.

• example:

• can't capture the relationships in the Student table

• a given student can be enrolled in multiple courses

• can't capture the relationships in the Course table

• a given course can have multiple students enrolled in it

• need to use a separate table:

Enrolled(student_id, course_name, credit_status)

Many-to-Many Relationship Sets

Recall: Primary Key

• We typically choose one of the candidate keys as the primary key.

• In an ER diagram, we underline the primary key attribute(s).

• In the relational model, we also designate a primary key
by underlying it.

Person(id, name, address, …)

• A relational DBMS will ensure that no two rows have
the same value / combination of values for the primary key.

• known as a uniqueness constraint

address emailname

Person

id age

• When translating an entity set to a relation,
the relation gets the same primary key as the entity set.

 Student(id, …)

 Course(name, …)

Studentid

Course name

Primary Keys of Relations for Entity Sets

• When translating a relationship set to a relation,
the primary key depends on the cardinality constraints.

• For a many-to-many relationship set, we take the union
of the primary keys of the connected entity sets.

 Enrolled(student_id, course_name, credit_status)

• doing so prevents a given combination of entities
from appearing more than once in the relation

• it still allows a single entity (e.g., a single student or course)
to appear multiple times, as part of different combinations

Primary Keys of Relations for Relationship Sets

EnrolledStudent Courseid name

credit status

• For a many-to-one relationship set,
if we decide to use a separate relation for it,
what should that relation's primary key include?

 Borrows(person_id, isbn)

Primary Keys of Relations for Relationship Sets (cont.)

BorrowsPerson Bookid isbn

• For a many-to-one relationship set,
if we decide to use a separate relation for it,
what should that relation's primary key include?

 Borrows(person_id, isbn)

• limiting the primary key enforces the cardinality constraint

• in this example, the DBMS will ensure that a given book
is borrowed by at most once person

• how else could we capture this relationship set?

Primary Keys of Relations for Relationship Sets (cont.)

BorrowsPerson Bookid isbn

• For a one-to-one relationship set, what should the primary key
of the resulting relation be?

 Chairs(person_id, department_name)

Primary Keys of Relations for Relationship Sets (cont.)

Foreign Keys

• A foreign key is attribute(s) in one relation that take on values
from the primary-key attribute(s) of another relation.

• example: MajorsIn has two foreign keys

• We use foreign keys to capture relationships between entities.

• All values of a foreign key must match the referenced
attribute(s) of some tuple in the other relation.

• known as a referential integrity constraint

…nameid
...Jill Jones12345678

...Alan Turing25252525

.........

departmentstudent
computer science12345678

english12345678

......

Student Department

MajorsIn

…name
...computer science

...english

......

Enforcing Constraints

• Example: assume that the tables below show all of their tuples.

• Which of the following operations would the DBMS allow?

• adding (12345678, 'John Smith', …) to Student

• adding (33333333, 'Howdy Doody', …) to Student

• adding (12345678, 'physics') to MajorsIn

• adding (25252525, 'english') to MajorsIn

…nameid
...Jill Jones12345678

...Alan Turing25252525

dept_namestudent
computer science12345678

english12345678

Student Department

MajorsIn

…name
...computer science

...english

