Computer Science E-66

Introduction
Database Design and ER Models
The Relational Model

Harvard Extension School
Cody Doucette, Ph.D.

Lecture designed by David G. Sullivan

Databases and DBMSs

* A database is a collection of related data.
+ refers to the data itself, not the program

* Managed by some type of database management system
(DBMS)

The Conventional Approach

Use a DBMS that employs the relational model
+ use the SQL query language

Examples: IBM DB2, Oracle, Microsoft SQL Server, MySQL

Typically follow a client-server model
+ the database server manages the data
+ applications act as clients

Extremely powerful
» SQL allows for more or less arbitrary queries
» support transactions and the associated guarantees

Transactions

A transaction is a sequence of operations that is treated as
a single logical operation.

Example: a balance transfer

transaction T1

read balancel
write(balancel - 500)
read balance?2
write(balance2 + 500)

Other examples:

* making a flight reservation
select flight, reserve seat, make payment

* making an online purchase

Transactions are all-or-nothing: all of a transaction’s changes
take effect or none of them do.

Why Do We Need Transactions?

» To prevent problems stemming from system failures.
* example:
transaction

read balancel

write(balancel - 500)
CRASH

read balance?2
write(balance2 + 500)

» what should happen?

Why Do We Need Transactions? (cont.)

» To ensure that operations performed by different users
don’t overlap in problematic ways.

» example: what’s wrong with the following?

user 1's transaction
read balancel ,)
write(balancel - 500) user 2's transaction

read balancel

read balance2

if (balancel+balance2 < min)
write(balancel - fee)

read balance2

write(balance2 + 500)

* how could we prevent this?

Limitations of the Conventional Approach

Can be overkill for applications that don’t need all the features
Can be hard / expensive to setup / maintain / tune
May not provide the necessary functionality

Footprint may be too large
» example: can’t put a conventional RDBMS on a small
embedded system

May be unnecessarily slow for some tasks
» overhead of IPC, query processing, etc.

Does not scale well to large clusters

Example Problem I: User Accounts

Database of user information for email,
groups, etc.

Signin
Username
Used to authenticate users
and manage their preferences

Password

Needs to be extremely fast and robust

v Stay signed in

DOn’t need SQL_ Why? Can't access your account?

Possible solution: a key-value store

* key = userid

» value = password and other user information

» less overhead and easier to manage

« still very powerful: transactions, recovery, replication, etc.

Example Problem II: Web Services

Services provided or hosted by Google, Amazon, etc.
Can involve huge amounts of data / traffic

Scalability is crucial
* load can increase rapidly and unpredictably
» use large clusters of commodity machines

Conventional relational DBMSs don't scale well in this way.

Solution: some flavor of noSQL

What Other Options Are There?

View a DBMS as being composed of two layers.

At the bottom is the storage layer or ¥
storage engine. logical layer |
+ stores and manages the data storage gngine+
Above that is the logical layer. o8 / | FS
» provides an abstract representation @ @ @ 8
of the data disks

* based on some data model

* includes some query language, tool, or API
for accessing and modifying the data

To get other approaches, choose different options for the layers.

Course Overview

» data models/representations (logical layer), including:

entity-relationship (ER): used in database design
relational (including SQL)

semistructured: XML, JSON

noSQL variants

* implementation issues (storage layer), including:

storage and index structures
transactions

concurrency control

logging and recovery

distributed databases and replication

Course Requirements

Lectures and weekly sections

sections: optional but recommended; start this week
also available by streaming and recorded video

Five problem sets

several will involve programming in Java
all will include written questions
grad-credit students will complete extra problems
must be your own work
 see syllabus or website for the collaboration policy

Midterm exam

Final exam

Prerequisites

» A good working knowledge of Java
» Acourse at the level of CSCI E-22

» Experience with fairly large software systems is helpful.

Course Materials

» Lecture notes will be the primary resource.

» Optional textbook: Database Systems: The Complete Book
(2nd edition) by Garcia-Molina et al. (Prentice Hall)

» Other options:
» Database Management Systems by Ramakrishnan and
Gehrke (McGraw-Hill)
» Database System Concepts by Silberschatz et al.
(McGraw-Hill)

Additional Administrivia

Instructor: Cody Doucette
» TA: Eli Saracino

Office hours and contact info. are available on the Web:
http://cscie66.sites.fas.harvard.edu

» For questions on content, homework, etc.: Ed Discussion

Database Design

* In database design, we determine:
» which pieces of data to include
* how they are related
* how they should be grouped/decomposed

« End result: a logical schema for the database
 describes the contents and structure of the database

ER Models
« An entity-relationship (ER) model is a tool for database design.
» graphical
* implementation-neutral

« ER models specify:
+ the relevant entities (“things”) in a given domain
+ the relationships between them

Sample Domain: A University

+ Want to store data about:
* employees
+ students
* courses
* departments

* How many tables do you think we’ll need?
» can be hard to tell before doing the design

* in particular, hard to determine which tables are needed
to encode relationships between data items

Entities: the “Things”

* Represented using rectangles.

+ Examples:

Course Student Employee

+ Strictly speaking, each rectangle represents an entity set,
which is a collection of individual entities.

Course Student Employee
CSCI E-119 Jill Jones Drew Faust
English 101 Alan Turing Dave Sullivan
CSCI E-268 Jose Delgado Margo Seltzer

Attributes

» Associated with entities are attributes that describe them.
* represented as ovals connected to the entity by a line
» double oval = attribute that can have multiple values

Course

Keys

* A key is an attribute or collection of attributes that can be used
to uniquely identify each entity in an entity set.

* An entity set may have more than one possible key.
* example:

Person

» possible keys include:

Candidate Key

» A candidate key is a minimal collection of attributes that is a key.
* minimal = no unnecessary attributes are included
* not the same as minimum

» Example: assume (name, address, age) is a key for Person

* itis a minimal key because we lose uniqueness
if we remove any of the three attributes:

* (name, address) may not be unique

—e.g., a father and son with the same name and address
+ (name, age) may not be unique
+ (address, age) may not be unique

» Example: (id, email) is a key for Person

* itis not minimal, because just one of these attributes
is sufficient for uniqueness

« therefore, it is not a candidate key

Key vs. Candidate Key

» Consider an entity set for books:

assume that: each book has a unique isbn
an author doesn't write two books
with the same title

Book

key? candidate key?

isbn
author_id, title
author_id, isbn

author_id

Primary Key

» We typically choose one of the candidate keys as the primary key.

* In an ER diagram, we underline the primary key attribute(s).

Course

Relationships Between Entities

» Relationships between entities are represented using diamonds
that are connected to the relevant entity sets.

» For example: students are enrolled in courses

Person Course

Another example: courses meet in rooms

Course Room

Relationships Between Entities (cont.)

Strictly speaking, each diamond represents a relationship set,
which is a collection of relationships between individual entities.

Course Room

CS 105 I CAS 315

cs 11] CAS 314
[]

CS 460 MCS 205
CS 510

In a given set of relationships:
 an individual entity may appear 0, 1, or multiple times
* a given combination of entities may appear at most once

« example: the combination (CS 105, CAS 315) may appear
at most once

Attributes of Relationships

» A relationship set can also have attributes.
+ they specify info. associated with the relationships in the set

+ Example:

Person Course

credit status

Key of a Relationship Set

» A key of a relationship set can be formed by taking the
union of the primary keys of its participating entities.

+ example: (Person.id, Course.name) is a key of enrolled

Person course

» The resulting key may or may not be a primary key.
Why?

Degree of a Relationship Set

Enrolled is a binary relationship set: it connects two entity sets.

* degree =2

Person

Course

It's also possible to have higher-degree relationship sets.

A ternary relationship set connects three entity sets.

* degree =3

Study
Group

Person % Course

Relationships with Role Indicators

It's possible for a relationship set to involve more than one
entity from the same entity set.

For example: every student has a faculty advisor, where
students and faculty members are both members of the

Person entity set.

advisor

Person

<{ Advises

advisee

In such cases, we use role indicators (labels on the lines)
to distinguish the roles of the entities in the relationship.

Cardinality (or Key) Constraints

A cardinality constraint (or key constraint) limits the number
of times that a given entity can appear in a relationship set.

» Example: each course meets in at most one (i.e., 0 or 1) room

Course Room

» A key constraint specifies a functional mapping from one
entity set to another.
» each course is mapped to at most one room (course - room)

* as aresult, each course appears in at most one relationship
in the meets in relationship set

+ The arrow in the ER diagram has same direction as the mapping.
» note: the R&G book uses a different convention for the arrows

Cardinality Constraints (cont.)

» The presence or absence of cardinality constraints divides
relationships into three types:

* many-to-one
* one-to-one
* many-to-many

« We'll now look at each type of relationship.

Many-to-One Relationships

Course

Room

¢

+ Meets In is an example of a many-to-one relationship.

» We need to specify a direction for this type of relationship.
» example: Meets In is many-to-one from Course to Room

* In general, in a many-to-one relationship from A to B:

A

¢

» an entity in A can be related to at most one entity in B

* an entity in B can be related to an arbitrary number of
entities in A (O or more)

Picturing a Many-to-One Relationship

Course * Room
cs105 I CAS 315
Cs 11 I CAS 314
CS 460] MCS 205
CS 510 E—

CS 610

Each course participates in at most one relationship,
because it can meet in at most one room.

Because the constraint only specifies a maximum (at most one),
it's possible for a course to not meet in any room (e.g., CS 610).

Another Example of a Many-to-One Relationship

Person

Borrows

+ The diagram above says that:
* a given book can be borrowed by at most one person
* a given person can borrow an arbitrary number of books

Book

« Borrows is a many-to-one relationship from Book to Person.

» We could also say that Borrows is a one-fo-many relationship

from Person to Book.

* one-to-many is the same thing as many-to-one,
but the direction is reversed

One-to-One Relationships

» In a one-to-one relationship involving A and B: [not from A to B]
+ an entity in A can be related to at most one entity in B
» an entity in B can be related to at most one entity in A

+ We indicate a one-to-one relationship by putting an arrow
on both sides of the relationship:

A

+ Example: each department has at most one chairperson, and
each person chairs at most one department.

Person

Department

Many-to-Many Relationships

* In a many-to-many relationship involving A and B:
+ an entity in A can be related to an arbitrary number
of entities in B (0 or more)
+ an entity in B can be related to an arbitrary number
of entities in A (0 or more)

+ If arelationship has no cardinality constraints specified
(i.e., if there are no arrows on the connecting lines),
it is assumed to be many-to-many.

How can we indicate that each student
has at most one major?

Person Department

* Majors In is what type of relationship in this case?

What if each student can have
more than one major?

Person

Department

* Majors In is what type of relationship in this case?

Another Example

How can we indicate that each student has at most one

advisor?

advisor

Person

< Advises

advisee

» Advises is what type of relationship?

Cardinality Constraints and
Ternary Relationship Sets

study
group

person % course

The arrow into "study group" encodes the following constraint:
"a person studies in at most one study group for a given course."

In other words, a given (person, course) combination is
mapped to at most one study group.

* agiven person or course can itself appear in multiple
studies-in relationships

For relationship sets of degree >= 3, we use at most one arrow,
since otherwise the meaning can be ambiguous.

Participation Constraints

Cardinality constraints allow us to specify that each entity
will appear at most once in a given relationship set.

Participation constraints allow us to specify that each entity
will appear at least once (i.e., 1 or more time).

* indicate using a thick line (or double line)

Example: each department must have at least one chairperson.

omitting
Person Department | the cardinality

constraints
for now

We say Department has total participation in Chairs.
* by contrast, Person has partial participation

Participation Constraints (cont.)

» We can combine cardinality and participation constraints.

Person

Department

* a person chairs at most one department

« specified by which arrow?

* adepartment has person as a chair

The Relational Model: A Brief History

» Defined in a landmark 1970 paper
by Edgar 'Ted' Codd.

» Earlier data models were closely tied
to the physical representation of the data.

» The relational model was revolutionary
because it provided data independence —
separating the logical model of the data

from its underlying physical representation.

» Allows users to access the data without understanding

how it is stored on disk.

The Relational Model: Basic Concepts

» A database consists of a collection of tables.

» Example of a table:

id name address class |dob

12345678 [Ji11 Jones Canaday C-54 2011 (3/10/85

25252525 |Alan Turing |Lowell House F-51 2008 (2/7/88

33566891 |Audrey Chu pfoho, Moors 212 2009 (10/2/86

45678900 [Jose Delgado |Eliot E-21 2009 |7/13/88

66666666 |Count Dracula|The Dungeon 2007 [11/1431

+ Each row in a table holds data that describes either:
* an entity
* a relationship between two or more entities

» Each column in a table represents one attribute of an entity.
» each column has a domain of possible values

Relational Model: Terminology

» Two sets of terminology:

table = relation
row = tuple
column = attribute

« We'll use both sets of terms.

Requirements of a Relation

Each column must have a unique name.

» The values in a column must be of the same type
(i.e., must come from the same domain).

* integers, real numbers, dates, strings, etc.

Each cell must contain a single value.
+ example: we can't do something like this:

id name ... |phones
12345678 |3i11 Jones |...|123-456-5678, 234-666-7890
25252525 |Alan Turing|...|777-777-7777, 111-111-1111

No two rows can be identical.
+ identical rows are known as duplicates

Null Values

» By default, the domains of most columns include a special value
called null.

* Null values can be used to indicate that:
+ the value of an attribute is unknown for a particular tuple
+ the attribute doesn't apply to a particular tuple. example:

Student

id name major

12345678 |3i11 Jones |... |computer science
25252525 |Alan Turing|... |mathematics
33333333 |pan babbler|... |null

Relational Schema

» The schema of a relation consists of:
» the name of the relation
» the names of its attributes
+ the attributes’ domains (although we’ll ignore them for now)

+ Example:
Student(id, name, address, email, phone)

» The schema of a relational database consists of the schema
of all of the relations in the database.

ER Diagram to Relational Database Schema

» Basic process:
* entity set - a relation with the same attributes

* relationship set - a relation whose attributes are:
« the primary keys of the connected entity sets

+ the attributes of the relationship set

Student Course

| @ @

Enrolled(id, name, credit_status)

« Example of converting a relationship set:

credit status

* in addition, we would create a relation for each entity set

Renaming Attributes

* When converting a relationship set to a relation, there may be
multiple attributes with the same name.

* need to rename them

+ Example:

Course Room

Meetsin(name, name)

i

Meetsin(course_name, room_name)

+ We may also choose to rename attributes for the sake of clarity.

Special Case: Many-to-One Relationship Sets

» Ordinarily, a binary relationship set will produce three relations:
+ one for the relationship set
» one for each of the connected entity sets

+ Example:

o

Meetsin(course_name, room_name)
Course(name, start_time, end_time)
Room(name, capacity)

Special Case: Many-to-One Relationship Sets (cont.)

» However, if a relationship set is many-to-one, we often:
» eliminate the relation for the relationship set

» capture the relationship set in the relation used for the
entity set on the many side of the relationship

Course Room

I

Course(name, start_time, end_time, room_name)
Room(name, capacity)

Special Case: Many-to-One Relationship Sets (cont.)

» Advantages of this approach:
* makes some types of queries more efficient to execute
* uses less space

Course Meetsin

name course_name | room_name
cscie50b cscie50b Sci Ctr B
csciell9 csciell9 Sever 213
csciel60 csciel60 Sci Ctr A
cscie268 cscie268 Sci Ctr A

/

Course

name ... | room_name
cscie50b Sci Ctr B
csciell9 Sever 213
csciel60 Sci Ctr A
cscie268 Sci Ctr A

Special Case: Many-to-One Relationship Sets (cont.)

» If one or more entities don't participate in the relationship,
there will be null attributes for the fields that capture the

relationship:

Course

name room_name
cscie50b Sci Ctr B
csciell9 Sever 213
csciel60 Sci Ctr A
cscie268 Sci Ctr A
csciel60 NULL

» If alarge number of entities don't participate in the relationship,
it may be better to use a separate relation.

Special Case: One-to-One Relationship Sets

» Here again, we're able to have only two relations —
one for each of the entity sets.

* In this case, we can capture the relationship set in the relation
used for either of the entity sets.

+ Example:

Person

Department

name office

Person(id, name, chaired dept)

Department(name, office)

I

OR Person(name, id)

Department(name, office, chair_id)

» which of these would probably make more sense?

Many-to-Many Relationship Sets

» For many-to-many relationship sets, we need to use
a separate relation for the relationship set.

* example:

» can't capture the relationships in the Student table
+ a given student can be enrolled in multiple courses

+ can't capture the relationships in the Course table
* a given course can have multiple students enrolled in it

* need to use a separate table:
Enrolled(student _id, course_name, credit_status)

Recall: Primary Key

» We typically choose one of the candidate keys as the primary key.

* In an ER diagram, we underline the primary key attribute(s).

Person

* In the relational model, we also designate a primary key
by underlying it.
Person(id, name, address, ...)

« Arelational DBMS will ensure that no two rows have
the same value / combination of values for the primary key.

* known as a uniqueness constraint

Primary Keys of Relations for Entity Sets

+ When translating an entity set to a relation,
the relation gets the same primary key as the entity set.

CiaD > Student(id, ...

(name) > Course(name, ...)

Primary Keys of Relations for Relationship Sets

* When translating a relationship set to a relation,
the primary key depends on the cardinality constraints.

» For a many-to-many relationship set, we take the union
of the primary keys of the connected entity sets.

credit status

- Enrolled(student id, course name, credit_status)

+ doing so prevents a given combination of entities
from appearing more than once in the relation

« it still allows a single entity (e.g., a single student or course)
to appear multiple times, as part of different combinations

Primary Keys of Relations for Relationship Sets (cont.)

» For a many-to-one relationship set,
if we decide to use a separate relation for it,
what should that relation's primary key include?

G Person fo<Borons>—{_sook_ |-G

- Borrows(person_id, isbn)

Primary Keys of Relations for Relationship Sets (cont.)

» For a many-to-one relationship set,
if we decide to use a separate relation for it,
what should that relation's primary key include?

G Porson o<Bgrons>—{ ook |-

- Borrows(person_id, isbn)

+ limiting the primary key enforces the cardinality constraint

« in this example, the DBMS will ensure that a given book
is borrowed by at most once person

* how else could we capture this relationship set?

Primary Keys of Relations for Relationship Sets (cont.)

» For a one-to-one relationship set, what should the primary key
of the resulting relation be?

- Chairs(person_id, department_name)

Foreign Keys

» A foreign key is attribute(s) in one relation that take on values
from the primary-key attribute(s) of another relation.

» example: Majorsin has two foreign keys
Majorsin

student department
12345678 |computer™science

/12345678 english
Studgnt \Department

id” name hame .
12345678 |3i11 Jones |... computer science|...
25252525 |Alan Turing]... english

» We use foreign keys to capture relationships between entities.

+ All values of a foreign key must match the referenced
attribute(s) of some tuple in the other relation.

» known as a referential integrity constraint

» Example: assume that the tables below show all of their tuples.

» Which of the following operations would the DBMS allow?

Enforcing Constraints

Majorsin
student dept_name
12345678 |computer\science
12345678 |english
Student Department
id ¥ name name
12345678 |3i11 3Jones computer science
25252525 |ATan Turing]... english

adding (12345678, 'John Smith', ...) to Student
adding (33333333, 'Howdy Doody', ...) to Student
adding (12345678, 'physics') to Majorsin

adding (25252525, 'english') to Majorsin

